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Abstract. We propose a new unified point compression format for Ed-
wards, Twisted Edwards and Montgomery curves over large-characteristic
fields, which effectively divides the curve’s cofactor by 4 at very little cost
to performance. This allows cofactor-4 curves to efficiently implement
prime-order groups.

1 Introduction

“Let G be a group of prime order q.” This defines the requirements for the
main group in many cryptographic systems [1,9,16,18,19], most often with the
intention that G will be the group of points on an elliptic curve. However, prac-
tical implementations usually do not quite deliver a group of prime order q, at
least not without significant caveats. Implementations of prime-order curves usu-
ally have incomplete or variable-time addition formulas. For example, OpenSSL
1.0.1f, LibTomCrypt 1.17, PolarSSL 1.3.9 and Crypto++ 5.6.2 all use a branch
to decide whether the inputs to their point-addition functions are equal, so that
they can call the doubling function instead. Some of these libraries also have
branches to detect cases where two points add to the identity point, or where
one of them is the identity point. Even if this does not introduce timing varia-
tions in ECDH or ECDSA signing, it may introduce timing variations in other
systems. Furthermore, there is a special case when encoding and decoding the
identity point, which is at infinity in the Weierstrass model.

This problem can be mitigated by using complete addition laws. While such
laws exist for prime-order curves [6,11], they are faster and much simpler for
other elliptic curves such as (twisted) Edwards curves [14,5,4], Hessian curves [15],
Jacobi quartics [8] or Jacobi intersections [26,20]. These curves have a cofactor,
denoted h, where the order of the curve is h · q for some large prime q. The
cofactor h is always divisible by 3 for Hessian curves, and by 4 for the other
models.

1.1 Pitfalls of a cofactor

Many authors consider the advantages of a non-prime-order group, such the
points on an Edwards curve, to outweigh the disadvantages. But the disadvan-
tages are not negligible. There are several pitfalls which appear specifically for
h > 1:



Small-subgroup attacks. Here an attacker sends a point whose order divides h,
and a hapless user multiplies it by some scalar and uses the result. This will
either result in a point known to the attacker (if the scalar is known to be
divisible by h), or worse it may give the attacker information about the scalar. If
the scalar is a private key, then leaking a few bits is a minor problem, though it
is devastating to password-authenticated key exchange (PAKE) protocols [13].

Leaking a few bits of a scalar is a much more serious problem if the scalar is
arithmetically related to a private key. Menezes and Ustaoglu used scalar leaks
through the cofactor in their attack [27] on MQV [25] and HMQV [24]. HMQV
was designed to avoid this weakness, but not successfully.

A related attack is to replace a point P with P + T , where T lies in a small
subgroup. If the user multiplies by a scalar s, they will get sP + sT instead of
sP , where the difference sT gives away the low-order bits of s. Therefore, it isn’t
always enough to reject points in the small subgroup.

The usual defense against these attacks is to multiply certain points by h, and
possibly to abort the protocol if the result is the identity. But one must decide
which points to take these steps on, and the extra factor of h can complicate
the arithmetic. In a prime-order group, this attack is easier to mitigate: at most,
one must check for the identity point in the proper places.

Non-injective behavior. Multiplication by a scalar is a 1-to-1 function if the
scalar is relatively prime to the group order. In a prime-order group, this is any
scalar in [1, q−1], and is true of a random scalar with high probability. The same
is not true in a composite-order group. This means that adding a small-order
element to e.g. a public key can produce the same result, possibly resulting in
identity misbinding. This can be mitigated by making scalars relatively prime
to h — exactly the opposite of techniques which clear the cofactor.

Covert channels. Non-injective behavior may make it easier to exfiltrate data
through the cofactor component, even in protocols where behavior is otherwise
deterministic.

Implementation-defined behavior. Some systems, such as Ed25519 [7], do not
specify behavior when the inputs have a nonzero h-torsion component. In par-
ticular, Ed25519 signature verification can be different for batched vs singleton
signatures, or between different implementations. This can cause disruption in
protocols where all parties must agree on whether a signature is valid, such as
a blockchain or Byzantine agreement. In other cases, it may make it easier to
fingerprint implementations.

Nontrivial modifications. If a system or protocol is specified and proved secure
on a prime-order group, then both the system and the proof may need to be
changed for a group with a cofactor h > 1. Usually the modification is small.
Often it is enough simply to multiply the outputs by h. However, only an expert
will be able to tell exactly what modification is required. Cryptographic proofs
are difficult, and this may represent enough work to prevent adoption.



1.2 Our contribution

The cofactor pitfalls can be avoided by using a related group of prime order
q. The most obvious choice is the order-q subgroup of the elliptic curve. But
validating membership in that subgroup is slow and complex, requiring either
an extra scalar multiplication, checking for roots of division polynomials, or
inverting multiple isogenies.

We propose two new ways to build a group of prime order q based on an
Edwards or twisted Edwards curve E of order 4q, thus eliminating the cofactor.
In the first proposal of this paper, the group is E/E [4]. That is, two points on
the curve E are considered equal if their difference has small order (dividing 4).
This requires three changes:

– The function which checks equality of group elements must be modified.

– The function which encodes points before sending them must encode these
equal points as equal sequences of bits.

– The function which decodes points must be designed to accept only the
possible outputs of the encoding function.

Our second, improved proposal uses a different group ψ(E), which in the usual
case will be 2E/E [2]. That is, only the even (2q-order) points of E are used, and
two points are considered the same if they differ by a point of order 2. This
requires the same three changes.

The difficult parts are the encoding and decoding routines, which are the
main contributions of this paper. We describe the encoding algorithm as “com-
pression” because its output is an element of the underlying field F rather than
the usual two elements. In fact, it will be a “non-negative” element of F, which
allows us to save an additional bit.

It is important to note that internally, the points used in the first proposal can
be any points on E , and in the second proposal they can be any even points on E .
Points which differ by a point of order 4 (resp. 2) are considered equal, and will
be encoded to binary strings in the same way. This is similar to using projective
coordinates: two values in memory may be considered same point and encode to
the same binary string, even though the X,Y and Z coordinates are different.
This is how using a prime-order ψ(E) instead of E mitigates small-subgroup
attacks. Points of small order can appear internally, but they are considered
equal to the identity element. Likewise P + T can appear internally with T in
a small-order subgroup, but it is considered equal to P and is encoded in the
same way.

With the combination of the complete Edwards group law and our point en-
coding, protocols can gain the simplicity, security and speed benefits of (twisted)
Edwards curves without any cofactor-related difficulty. The cost is a small in-
crease in code complexity in the point encoding and decoding functions. On
balance, we believe that our encoding can make the design of the entire system
simpler. In terms of overhead, our encoding and decoding perform as well as
existing point compression and decompression algorithms.



Designers often use untwisted Edwards, twisted Edwards or Montgomery
curves. Montgomery curves give simple Diffie-Hellman protocols, and twisted
Edwards curves give a speed boost but have incomplete formulas in fields of order
3 (mod 4). Our second proposal adds flexibility for curve choice. The same wire
format can be used for a Montgomery curve as for its 4-isogenous Edwards and
twisted Edwards curves. Furthermore, for twisted Edwards curves of cofactor 4,
the subgroup we use avoids the incomplete cases in the addition laws.

Our group ψ(E) and encoding algorithm can be used on curves with cofactor
greater than 4. It still divides the cofactor by 4, so ψ(E) will not have prime
order. Additionally, ψ(E) is not of the form 2E/E [2] if E has full 2-torsion.

We call this technique “Decaf” after the procedure which divides the effect of
coffee by 4. We have built reference and optimized implementations of Decaf, and
have posted them online at http://sourceforge.net/p/ed448goldilocks/

code/ci/decaf/tree/. Our code carries out essentially all the operations de-
scribed in this paper and appendices on the curve Ed448-Goldilocks, reducing
the cofactor from 4 to 1.

2 Definitions and notation

Finite field. Let F be a finite field whose characteristic is neither 2 nor 3.

Even elements. An element g of an Abelian group G is said to be even if g = 2h
for some h ∈ G. The even elements form a subgroup denoted 2G.

Torsion elements. An element g of a group G is a k-torsion element if k ·g = 0G.
The k-torsion elements of an Abelian group form a subgroup usually denoted
G[k]. The k-torsion subgroup of an elliptic curve over a finite field has order
dividing k2; in particular, the 2-torsion subgroup has size 1, 2 or 4.

Projective space. Denote by Pn(F) the n-dimensional projective space over F.
Its elements are written as ratios (X : Y : Z : . . .), usually in upper-case. As
a traditional short-cut, we usually write the elements of P2(F) as a lower-case
tuple (x, y) equivalent to (x : y : 1), with the understanding that the equations
involving these points may have be extended to cover “points at infinity” of the
form (X : Y : 0).

Twisted Edwards curves. Twisted Edwards curves have two parameters, a and
d. They are specified as

Ea,d :=
{

(x, y) ∈ P2(F) : a · x2 + y2 = 1 + d · x2 · y2
}

Another form, extended homogeneous coordinates [22], is used for high perfor-
mance and simpler formulas:

Ea,d :=
{

(X : Y : Z : T ) ∈ P3(F) : XY = ZT and a ·X2 + Y 2 = Z2 + d · T 2
}

http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/
http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/


We will use “untwisted” to mean a = 1. “Twisted” is the general case, which
we sometimes narrow to a = −1. The identity point of any Edwards curve is
(0, 1) = (0 : 1 : 1 : 0).

An Edwards curve is called “complete” if d and ad are nonsquare in F, which
also implies that a is square. A complete Edwards curve has no points at infinity,
and supports fast addition formulas which are complete in that they compute
the correct answer for any two input points [5].

Montgomery curves. A Montgomery curve has two parameters, called A and B.
It has the form

MB,A :=
{

(u, v) ∈ P2(F) : Bv2 = u · (u2 +Au+ 1)
}

The identity point of this curve is a point at infinity, namely (0 : 1 : 0). The
curve is “untwisted” if B = 1. Over 3 (mod 4) fields, any twisted Montgomery
curve can be put into a form with B = 1, but over 1 (mod 4) fields, this is not
true. In particular, B 6= 1 is potentially useful to handle the twist of Curve25519,
which has cofactor 4.

Jacobi quartic curves. A Jacobi quartic curve has two parameter, called A and
e, and is defined by

Je,A :=
{

(s, t) ∈ P2(F) : t2 = es4 + 2As2 + 1
}

with an identity point at (0, 1). The curve is “untwisted” if e = 1. We will only
consider curves with e = a2 in this paper; such curves always have full 2-torsion.

The curve parameters. As a corollary of Ahmadi and Granger’s work [2], for any
a, d ∈ F\{0, 1}, the following curves are isogenous:

Ea,d; E−a,d−a; Ma,2−4d/a; Ja2,a−2d

Specifically, the Edwards, twisted Edwards and Montgomery curves are all 2-
isogenous to the Jacobi quartic, and thus 4-isogenous to each other. We will
write the 2-isogenies explicitly in Sections 4.1 and 5. Since our point encoding
works on this family of isogenous curves, we will consider these specific curves
parameterized by a and d.

We will write E as a shorthand for Ea,d, J for Ja2,a−2d, andM forMa,2−4d/a.

Coset. In an Abelian group G, the coset of a subgroup H ⊂ G with respect to
an element g ∈ G is H + g := {h+ g : h ∈ H}.

Non-negative field elements. Let p > 2 be prime. Define a residue x ∈ F =
Z/pZ to be “non-negative” if the least absolute residue for x is in [0, (p− 1)/2],
and “negative” otherwise. This definition can be generalized (easily but non-
canonically) to extension fields. Define |x| to be x or −x, whichever is non-
negative. Define

√
x to be an arbitrary square root of x, not necessarily the

non-negative one.



We chose this definition of non-negative because it is easy to evaluate, and
it works over every odd-characteristic field. Alternative choices would be to dis-
tinguish by the low bit, or for fields 3 (mod 4), by the Legendre symbol. We
avoided the Legendre symbol because it restricts field choices and is somewhat
expensive to compute.

Encoding. For sets S and T , and encoding from S to T is an efficient function
enc : S → T with efficient left-inverse dec : T → S]{⊥}, which fails by returning
⊥ on every element of T\enc[S]. We are interested in an encoding from an elliptic
curve E over the field F to a binary set {0, 1}n for some fixed n. We assume
that the implementer has already chosen an encoding from F to binary. Since
encodings can be composed and distributed over products, it suffices to encode
to a set such as F, F2 or F× {0, 1} which has a natural encoding to binary.

Compression. Since most elliptic curve forms are defined as subsets of P2(F),
they admit a straightforward encoding to F2 (and thence to binary) with a finite
number of special cases corresponding to points at infinity. We call an encoding
“point compression” or simply “compression” if its codomain is smaller than F2

when naturally encoded to binary. Most of the encoding algorithms in this paper
map to the set F or to its non-negative elements, and so are point compression
functions. The set of non-negative elements of F generally requires one fewer bit
to encode than F itself.

3 An Edwards-only solution

There is a simple way to remove the a cofactor of 4 from an untwisted Edwards
curve. A complete Edwards curve Ea,d has a 4-torsion subgroup of size exactly
4, whose coset with respect to P = (x, y) is

E [4] + P =
{

(x, y); (y/
√
a,−x

√
a); (−x,−y); (−y/

√
a, x
√
a)
}

Of this coset, there is exactly one representative point such that y and xy are
both non-negative, and x is nonzero.1 We can define the encoding of P to be the
y-value of this representative. Note that the representation of the identity point
is (0,−1), so the identity point encodes to 0 ∈ F.

Similar solutions apply to incomplete Edwards curves. For curves whose 4-
torsion group is Z4, there is exactly one representative with y and y/x both
finite and non-negative. For curves with full 2-torsion, there is exactly one rep-
resentative with x finite and both y and (y2 + ax2)/xy non-negative.

The usual addition formulas for incomplete Edwards curves produce the
wrong answer (0/0) for operations involving points at infinity, but are otherwise
complete. Therefore, if the decoding operation chooses a coset representative in
a subgroup that contains no points at infinity (e.g. in the prime-order subgroup),

1 When a = 1, there is also exactly one representative where x and y are both non-
negative, and x is nonzero, which could make for a simpler encoding.



then it is safe to use these curves. However, there is not an obvious way to make
this section’s decoding formulas restrict to a subgroup.

Furthermore, this format is not compatible with the fast, simple Montgomery
ladder on Montgomery curves. We will remedy these problems using a slightly
more complex encoding.

4 A solution from the Jacobi quartic

On the Jacobi quartic Ja2,a−2d, the coset of the 2-torsion group with respect to
P = (s, t) is exactly

J [2] + P =
{

(s, t); (−s,−t); (1/as,−t/as2); (−1/as, t/as2)
}

So a similar solution applies on J modulo its 2-torsion: we can encode a point
P by the s-coordinate of the coset representative (s, t), where s is non-negative
and finite, and t/s is non-negative or infinite2. Call this encoding encJ (P ), and
call the corresponding decoding algorithm decJ . Note that the identity point
encodes to 0 ∈ F.

4.1 From the Jacobi quartic to Edwards curves

The curves Ea,d and Ja2,a−2d are isogenous by the map

φa(s, t) =

(
2s

1 + as2
,

1− as2

t

)
with dual φ̄a(x, y) =

(
x

y
,

2− y2 − ax2

y2

)
Note that swapping (a, d) with (−a, d − a) results in the same curve Ja2,a−2d,
and gives an isogeny φ−a to the curve E−a,d−a.

We will need the following lemma, whose trivial proof is omitted:

Lemma 1. Let φ be a homomorphism from an abelian group G to another
abelian group H, and let G′ be a subgroup of G. Then φ acts as a well-defined
homomorphism from G/G′ to φ[G]/φ[G′] which is a subgroup of H/φ[G′]. Fur-
thermore, if kerφ ⊆ G′, then φ acts as an isomorphism between these groups.

Since the isogeny φa is a group homomorphism whose kernel is in J [2], we can
extend the encoding on J /J [2] to an encoding on φa[J ]/φa[J [2]]:

enc(P ) := encJ (φ−1a (P )) with dec(b) := φa(decJ (b))

The lemma shows that both encoding and decoding are well-defined. In partic-
ular, P has two preimages under φa, but they represent the same element of
J /J [2] and have the same encoding under encJ .

Let ψ(E) denote the group φa[J ]/φa[J [2]]. If the 4-torsion group of E is
cyclic, then ψ(E) is more simply expressed as 2E/E [2].

2 Checking the sign of s/t works about as well as t/s in our formulas; the choice of
t/s is more or less arbitrary.



4.2 Encoding

When encoding from ψ(E), we are given a point P = (x, y) in the image of φaq
on E . We need to efficiently compute s where (s, t) = φ−1a (x, y). We know that

x = 2s/(1 + as2)

so s = (1±
√

1− ax2)/ax

Also,

y = (1− as2)/t

so t/s = (1− as2)/sy

= ∓2
√

1− ax2/xy

It turns out to be particularly straightforward to compute this encoding from
the popular extended homogeneous coordinates. Explicit formulas are given in
Appendix A.1.

4.3 Decoding

To decode, we are given s and must compute

(x, y) =

(
2s

1 + as2
,

1− as2√
a2s4 + (2a− 4d)s2 + 1

)

with the square root t taken so that t/s is non-negative. This requires the “inverse
square root trick” to compute 1/s and t at the same time, with care to avoid
division by 0. The exact formulas are given in Appendix A.2. The input must
be rejected if s is negative or if it is not a field element (eg. if it is the binary
encoding of a number ≥ p), or if the square root doesn’t exist.

It is simplest to decode to projective form, so that the denominators need
not be cleared. It is also relatively easy to decode to affine form by batching a
computation of 1/(1 + as2) with the square root. Decoded points always have a
well-defined affine form on curves with cofactor exactly 4, because those curves
have no points at infinity in the image of φa.

4.4 Completeness

Importantly, if the cofactor of J is exactly 4, then the image ψ(E) contains no
points at infinity. An easy way to see this is that if φa(s, t) were at infinity, then
φ̄a(φa(s, t)) would be either at infinity or at (0,−1). In either case, it would be a
nontrivial 2-torsion point [21]. But it cannot be a 2-torsion point, because φ̄a◦φa
is the doubling map on J (by definition of an isogeny), and its image is exactly
the subgroup of order q.



4.5 Equality

Ordinarily, testing for equality in a quotient group G/H requires testing whether
P = Q+H for each H ∈ H. But if the cofactor is exactly 4, then equality testing
is actually easier on ψ(E) than on E . In this case, two points (X1 : Y1 : Z1 : T1)
and (X2 : Y2 : Z2 : T2) are equal if and only if

X1 · Y2 = X2 · Y1

This is because X/Y is the s-coordinate of the image Q of φ̄a(X : Y : Z : T )
on J . The only other point with that s-coordinate has a nontrivial 2-torsion
component (it is (0,−1) − Q), but the image (φ̄a ◦ φa)[J ] is the prime-order
subgroup J [q].

In particular, for a curve of cofactor exactly 4, a point (X : Y : Z : T ) is
equal to the identity precisely when X = 0.

4.6 Security

Using Decaf gives the security benefits of a prime-order group without weakening
well-studied cryptographic assumptions. In particular:

– The discrete logarithm problem is equivalent on E ,J and ψ(E). The same is
true for computational Diffie-Hellman, gap DH, static DH, strong DH, and
should hold for similar computation problems.

– If the Decaf group ψ(E) has prime order q, then the DDH problem is equiva-
lent on E [q],J [q] and ψ(E). The same is true for decision linear, and should
hold for similar decision problems. These decision problems are easy on
groups with a small cofactor, such as E itself.

The straightforward proofs of these reductions are omitted.

4.7 Batch encoding

On a server which needs to generate signatures and/or ephemeral keys at prodi-
gious rates, it may be advantageous to batch the point encoding algorithm.

The encoding algorithm listed above cannot be batched easily because of the
inverse square root computation. However, the square root can be avoided if we
wish to compress 2P instead of P , that is, if P is computed as (k/2 mod q) ·B
instead of k · B. In this case, we can simply evaluate the dual 2-isogeny φ̄ from
E to J :

– Compute 1/(xy) and t/s = (2− y2 − ax2)/xy.
– If t/s is non-negative, then output |s| = |x/y| = |x2/xy|.
– Otherwise output |1/s| = |y/x| = |y2/xy|.

The computation of 1/(xy) can be batched over multiple points using Mont-
gomery’s trick.



Encoding enc cost dec cost clear h order factor size

(x, y) 1I + 2M 3M 12M 4q → q 4 2dlg |F|e
(x, sign y) 1I + 2M 1I2 + 3M 12M 4q → q 4 dlg |F|e+ 1

(x, sign y), check 1I + 2M > 2I2 + L 0 q 1 dlg |F|e+ 1

First proposal 1I + 2M 1I2 + 3M 0 4q 1 dlg |F|e − 1

Second proposal 1I2 + 7M 1I2 + 10M 0 2q 1 dlg |F|e − 1

Batchable 1I + 6M 1I2 + 10M 0 2q 2 dlg |F|e − 1

Fig. 1. Cost of encoding and decoding algorithms. M = multiply, I = inversion, I2 =
inverse square root, L = Legendre symbol. Squarings are treated as 0.8M and multiplies
by constants as 0.2M , but columns are rounded to the nearest M .

4.8 Performance

Overall, Decaf’s performance is very similar to a traditional point compression
scheme. Encoding and decoding take one field exponentiation each.

A comparison to existing point encoding algorithms is shown in Figure 1. It
shows:

– The encoding and decoding costs.
– The cost to clear the cofactor if one remains.
– The order of the resulting points on the curve, with 4q → q meaning a

cofactor that will most likely be cleared.
– The extra factor induced by encoding and cofactor clearing.
– The size in bits of the encoding’s codomain.

If inversion I is implemented using Fermat’s little theorem, it is likely to be
slightly more expensive than an inverse square root I2. In practice, implementa-
tions that need both I and I2 with |F| ≡ 3 (mod 4) often implement inversion as

x/(±
√
x2)2, costing M + 2S more, and this is usually close to optimal anyway.3

The (x, y) method is uncompressed, and (x, sign y) is classically compressed.
These methods do not remove the cofactor, so many protocols will remove it at
the cost of two doublings ≈ 12M . This changes the order of the internal points
from 4q to q. The third row is compression with order checking. The order
checking can be accomplished by inverting a 2-isogeny twice: the first inversion
requires an inverse square root, but the second requires only checking that the
root exists, i.e. computing a Legendre symbol.

The first proposal (Section 3) is a quotient group on an untwisted Edwards
curve. It is slightly more expensive on a twisted Edwards curve, and is dangerous
for such curves when |F| ≡ 3 (mod 4) because the internal points can have order
4. The second proposal (Section 4) avoids this problem, and gives an encoding

3 We tested a simple dynamic program which computes 3-register powering ladders,
and it gave this technique for NIST P-192, P-256, P-384, P-521, and also for 2414−17
(Curve41417) and 2448 − 2224 − 1 (Ed448-Goldilocks).



compatible with several curve models, but at the cost of about 8 extra field
multiplications and correspondingly higher complexity.

A downside of methods which include an inverse square root I2 is that they
cannot use an EGCD-based inversion method. They also cannot be batched
using Montgomery’s batch inversion trick, which accomplishesN inversions using
one inversion and 3(N − 1) multiplications. The batchable encoding method
(Section 4.7) replaces the inverse square root in encoding with an inversion but
multiplies by an extra factor of 2.

It is seen that our methods cost less in total than point compression plus
clearing the cofactor. Even for operations which do not need to clear the cofactor
(eg. key generation), the overhead from our encoding is relatively small. Fast key
generation operations cost on the order of 3M per bit of the curve’s order, so the
difference in encoding costs is well under 1% for cryptographically useful curves.

5 Compatibility with Montgomery curves

The Montgomery ladder on Montgomery curves is a very simple and fast way
to implement scalar multiplication for Diffie-Hellman (DH) key exchange. In
its simplest form, the ladder discards sign information, making it inherently
incompatible with any point encoding format that conveys sign information.
Furthermore, it does not distinguish between the curve and its quadratic twist,
necessitating the use of twist-safe curves [3]. However, we would like to inter-
operate with the Montgomery ladder with minimal changes. For example, if a
protocol uses a (u, sign v) format, then the ladder can be modified to compute
the sign, or the protocol can be changed to discard the sign bit for DH outputs.

We will show how to use Decaf with the Montgomery ladder on the curve

Ma,2−4d/a : av2 = u · (u2 + (2− 4d/a) · u+ 1)

where conveniently the value of (A + 2)/4 is 1 − d/a. The curve Ma,2−4d/a is
isogenous to Ja2,a−2d by the maps

φ(s, t) =

(
1

as2
,− t

as3

)
and φ̄(u, v) =

(
1− u2

2av
,
a(u+ 1)4 + 8du(u2 + 1)

4a2v2

)
More simply, φ(s, t) = (as2, ts)+T2, where the 2-torsion point T2 can be ignored
due to the quotient. This means that Montgomery ladder implementations can
take input in Decaf format, simply by starting the ladder at u = as2.

When the ladder finishes, it is possible to efficiently encode the output point
in the Decaf point format, including the correct sign information for v. However,
recovering the sign information is complicated. Furthermore, it is possible to re-
ject elements on the twist rather than on the curve, which the usual Montgomery
ladder does not do, and it is possible to do all of this with only one field ex-
ponentiation (an inverse square root). This means that the Montgomery ladder
will behave exactly the same as a standard decoding, scalar multiplication and



encoding. We give the full details of how to do this in Appendix B. Some of the
formulas in that section may be of independent interest.

It is also possible (and complicated) to do these things with existing point
formats such as (u, sign v), but almost no implementations do. Instead, since the
Montgomery ladder is used almost exclusively for Diffie-Hellman, most imple-
mentations clear the cofactor and output only u, losing the information about
v. This leaves the Montgomery ladder code very simple. It is also easy to do
this with the Decaf encoding, by clearing the cofactor4 and outputting |1/

√
au|.

The implementation should abort on u = 0 and u = ∞, which lie in a small
subgroup. This will also reject points on the twist, because even points on the
twist have either u = 0, u =∞ or au nonsquare.

An Edwards or twisted Edwards implementation can interoperate with this
simpler behavior simply by computing |s| = |x/y|, instead of encoding any sign
information.

6 Hashing to the curve

Some protocols require a map from F to a curve [10,19,23], either to build a hash
function which is either indifferentiable from a random oracle, or at least suit-
able for encoding computational Diffie-Hellman (CDH) challenges in the random
oracle model. We could do this by using Elligator 1 or 2 on E orM. Since Decaf
only operates subgroups on these curves, we would need to double the output of
the map to make sure it is in the subgroup.

However, there is a better solution. We can instead use Elligator 2 on the
Jacobi quartic J , since it has a point of order 2. Then we can translate this
point to the Edwards and Montgomery curves using the isogeny. That way, the
groups and maps implemented by these curves are all compatible. The formulas
for Elligator 2 are found in Appendix C. It is important to note that Elligator 2
provides a 1:1 map to a group of order h · q, not of order (h/4) · q. Therefore,
the map be up to 4:1 once the isogeny and quotient are applied.

This map is suitable for deriving CDH challenges from a random oracle. That
is, it is still suitable for use in derivatives of BLS [10], SPAKE2 [1]5, SPEKE [23]
and possibly Dragonfly [19]6. These protocols do not require a random oracle
map to G. They only require a map from strings to the curve which is at most
k-to-1 for small k, hits at least a 1/` fraction of the points for small `, and
whose inverse is efficiently sampleable. When a full random oracle map to G is

4 Clearing the cofactor takes one doubling on a cofactor-4 curve, because of the isogeny.
Another option would be to quotient out the cofactor, by choosing the lexicograph-
ically greater of |

√
u/a| and |1/

√
au|. But this is more complex and doesn’t reject

points on the twist.
5 Replacing SPAKE2’s H(password) · (M,N) with an Elligator-like map results in a

protocol with the same properties but no static-CDH assumption.
6 Dragonfly lacks a security proof, so we cannot actually be sure that any such map

is suitable. But given the similarity to SPEKE this seems likely.



required, Brier et al.’s result [12] shows that mapping two independently chosen
field elements and adding them is sufficient.

It is still possible to use Elligator 2 as a partial steganographic encoding
for public keys, as in EKE. One may invert the isogeny to obtain a point on
J , randomize its 2-torsion components, and apply the inverse map defined by
Elligator 2. Unfortunately, this requires an extra randomization step and an
extra inverse-square-root operation compared to the original Elligator 2.

7 Removing larger cofactors

Quotient groups can be used to remove larger cofactors. However, it is not im-
mediately clear which point should be the distinguished one. Simply using the
least lexicographic encoding would work. It would take linear time in h to scan
every point in the coset, but still only one inversion because of Montgomery’s
batch inversion trick. Such a linear-time scan would be required both to encode
and to decode a point.

However, in the case of complete Edwards curves E with E [8] isomorphic to
Z8, there is a simpler way to distinguish one point from a coset. In this case, J
has a small subgroup isomorphic to Z2 × Z4. The Z2-component is the kernel
of the isogeny, so that the Z4 component maps to the 4-torsion subgroup of E .
To choose a distinguished point in a coset S = E [8] +P it suffices to choose one
of the two points (x, y) with xy non-negative and y 6= 0. This chooses a point
modulo E [2], and then one can run the encoding for E/E [2] to produce the final
encoding. It is possible to do this with only one inverse square root. To decode
the point, one must decode it to affine form instead of projective, and check that
xy is non-negative.

This allows Decaf to operate on Ed25519 or the isogenous curve E1,−121655.
Since over a 1-mod-4 field, Ea,d and E−a,−d are isomorphic by the map x →
x
√
−1, arithmetic on either curve can still take advantage of the faster complete

twisted Edwards formulas.

8 Future work

We do not believe that Decaf is the last word in cofactor-reducing compression
algorithms. Additionally, an improved encoding scheme with simpler formulas
would make this technique more compelling.

9 Conclusion

We have shown a straightforward way to implement a prime-order group G using
Edwards, twisted Edwards, Jacobi quartic and Montgomery curves. All four
curve shapes implement the same group and so are compatible, except that as
usual it is complicated to make the Montgomery ladder retain sign information.
Our technique is otherwise similar in complexity and performance to traditional



point compression techniques, though it may improve performance by making
faster curves safe. Furthermore, we have shown how to implement an Elligator-
like map from F to G, which is also compatible with all 4 models.
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22. Hüsseyin Hışıl, Kenneth Wong, Gary Carter, and Ed Dawson. Twisted edwards
curves revisited. Advances in Cryptology–ASIACRYPT 2008, pages 326–343, 2008.

23. David P Jablon. Strong password-only authenticated key exchange. ACM SIG-
COMM Computer Communication Review, 26(5):5–26, 1996.

24. Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In
Advances in Cryptology–CRYPTO 2005, pages 546–566. Springer, 2005.

25. Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Vanstone. An
efficient protocol for authenticated key agreement. Designs, Codes and Cryptogra-
phy, 28(2):119–134, 2003.

26. P-Y Liardet and Nigel P Smart. Preventing spa/dpa in ecc systems using the jacobi
form. In Cryptographic Hardware and Embedded Systems?CHES 2001, pages 391–
401. Springer, 2001.

27. Alfred Menezes and Berkant Ustaoglu. On the importance of public-key valida-
tion in the mqv and hmqv key agreement protocols. In Progress in Cryptology-
INDOCRYPT 2006, pages 133–147. Springer, 2006.

28. Peter Montgomery. Speeding the pollard and elliptic curve methods of factoriza-
tion. Mathematics of computation, 48(177):243–264, 1987.

A Explicit formulas for encoding and decoding
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s = (1±
√

1− ax2)/ax and t/s = ∓2
√

1− ax2/xy

We know from the curve equation that

(1− ax2) · (1− y2) = 1 + ax2y2 − (y2 + ax2) = (a− d)x2y2

so that √
1− ax2/xy = ±

√
(a− d)/(1− y2)

Observe that in extended homogeneous coordinates,

1/x2 = (a− dy2)/(1− y2) = (aZ2 − dY 2)/(Z2 − Y 2)
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and therefore

1/x = (aZX − dY T )/(Z2 − Y 2)

This leads to a relatively simple encoding formula given an inverse-square-root
algorithm:

r ← 1/
√

(a− d) · (Z + Y ) · (Z − Y )

u← (a− d) · r
r ← −r if − 2 · u · Z is negative

s← |u · (r · (aZ ·X − d · Y · T ) + Y )/a|

In theory, this formula has an exceptional case because it divides by 0 when
y = ±1. But if the inverse square root function returns r = 0 in this case, the
correct answer s = 0 will emerge.

A.2 Decoding

To decode to Ea,d, we must recover

(x, y) =

(
2s

1 + as2
,

1− as2√
a2s4 + (2a− 4d)s2 + 1

)

where
√
a2s4 + (2a− 4d)s2 + 1/s is non-negative. We can compute this as:

Reject unless s = |s|
X ← 2 · s
Z ← 1 + a · s2

u← Z2 − 4d · s2

v ←

1/
√
u · s2 if u · s2 is square and nonzero

0 if u · s2 = 0
[reject] if u · s2 is not square

v ← −v if u · v is negative

w ← v · s · (2− Z)

w ← w + 1 if s = 0

Y ← w · Z
T ← w ·X
P ← (X : Y : Z : T )

The special case for s = 0 is required to decode s = 0 to the identity point
instead of the point (0, 0), which isn’t on the curve.



B The modified Montgomery ladder

We use a modified version of the traditional Montgomery ladder on Montgomery
curves [28]. This uses our knowledge of s0 such that the initial state u0 = as20.
It converts

(s0, U1 : Z1, U2 : Z2) where (s0 : v0 : 1) + (U1 : V1 : Z1)− (U2 : V2 : Z2) = 0M

for some unknown v0, V1, V2, to

(s0, U3 : Z3, U4 : Z4)

where

(U4 : V4 : Z4) = 2(U2 : V2 : Z2) and (U3 : V3 : Z3) = (U1 : V1 : Z1)+(U2 : V2 : Z2)

again with the V components unknown. Note that onMa,2−4d/a, the coefficient
(A+ 2)/4 = 1− d/a. The ladder works as follows:

E ← U2 + Z2

F ← U2 − Z2

G← U1 + Z1

H ← U1 − Z1

K ← E2 − F 2

U3 ← (EH + FG)2

Z3 ← a · (s0 · (EH − FG))2

U4 ← E2 · F 2

Z4 ← K · (F 2 + (1− d/a) ·K)

The computation of the common subexpressions EH,FG,E2 and F 2 has been
removed for brevity. The salient feature of this ladder is that it computes as inter-
mediate results S3 and W3 which are square roots of X3 and Z3/a respectively.
Our implementation allocates is temporary variables in a way that prevents these
intermediates from being overwritten until the next iteration of the ladder. This
means that they will be available to the encoding algorithm.

B.1 Encoding

At the end of the Montgomery ladder, we need to encode the point stored in
U4 : Z4. Recall that a point on Ma,2−4d/a is the image of an isogeny from
Ja2,a−2d:

φ((s, t)) = (as2, st) + T2 with inverse φ−1((u, v) + T2) = (
√
u/a, v/

√
u/a)

Because the encoding is the same modulo 2-torsion components, we can ignore
T2 completely. The principal difficulty of encoding is to simultaneously determine



√
u2 and its inverse from the ladder state, and whether t2/s2 = av2/u2 is positive

given that t0/s0 = av0/u0 is known to be positive. Fortunately, the invariants
of the ladder make this possible. From [17], Appendices A.2 and A.3, we know
that if

(u0, v0) + (u1, v1) + (u2, v2) = 0 on M

that is, if these points lie on a line, then

2av1v2 = (u1u2 + 1)(u1 + u2)− u0(u1 − u2)2 + 2Au1u2 (1)

and symmetrically, and also

4(u0 + u1 + u2 +A)(u0u1u2) = (1− u0u1 − u1u2 − u0u2)2 (2)

Adding (2) to 2u0 · (1), we have

4au0v1v2 = (1− u1u2 − u0u2 + u0u1) · (1− u1u2 + u0u2 − u0u1) (3)

and symmetrically. Multiplying and dividing symmetric copies of this equation,
we obtain

4au0u1v
2
2/u2 = (1− u1u2 − u0u2 + u0u1)2

so that
v2
u2

=
1− u1u2 − u0u2 + u0u1

±2
√
au0u1u2

This equation cannot determine the sign of the square root, but (3) shows it to
be consistent for all three points on the line.

This means that it is enough to compute ±1/
√
au0u1u2. This will allow

us to determine av0/u0 to adjust the sign of the square root. It will allow us
to check whether av2/u2 is negative, in which case we should output 1/

√
au2

instead of
√
u2/a. Furthermore, the input point s0 is

√
u0/a, and the modified

Montgomery ladder state contains either
√
au1 or

√
au2, depending on the last

bit of the ladder. This allows us to compute
√
u2/a or its inverse from the

ladder state and 1/
√
au0u1u2 with no additional field exponents. In the actual

computation, u1 and u2 are given in projective form, but this does not greatly
complicate matters because the equations are nearly homogeneous.

Special cases If u2 is zero or infinite, then it is a 2-torsion point and the output is
zero. Likewise if u0 = 0, then the base point is the identity and again the output
will always be zero. If u1 is zero or infinite, then the output is either the initial
point or its inverse, depending on whether the last step in the ladder swapped
u1 and u2. So the output should be either s0 or |1/as0|.

Twist rejection The above procedure will reject points which are on the twist of
M instead of on M itself, because au0u1u2 will not be square for such points.
However, there is one sticking point: if the secret key is 0 or ±1 modulo the
twist’s group order q′, then u1 or u2 may be 0 even if u0 6= 0. This would make



au0u1u2 = 0 a square number. This quirk is unlikely to apply in a real system,
but it is still worth avoiding.

To fix this issue, we can test whether au0u1u2 = 0; if so, the special case
above is used to determine the sign, so the output of the square root doesn’t
matter. Therefore, the square root can be changed to

√
u20 +Au0 + 1 to deter-

mine whether the input point was on the curve or not.

C Elligator 2

The Jacobi quartic Ja2,a−2d is birationally equivalent to the Legendre curve

ay2 = x(x− 1)(x− d/a)

by the maps

(s, t) =

(
ax− d
a2y

,
ax2 − 2dx+ d

ax(x− 1)

)
; (x, y) =

(
as2 + t+ 1

2as2
,
as2 + t+ 1− 2ds2

2a2s3

)
Since the Legendre curve has 3 points of order 2, we have a choice of which to
use as the point of order 2 in Elligator 2. It turns out to be best for symmetry
if we use (d/a, 0).

The Elligator 2 map E to Ja2,a−2d starts with a fixed quadratic nonresidue n
and an input r0 ∈ F, and begins by computing a probable nonresidue r := nr20.
It then returns

(s, t) =

(
+

√
(r + 1)(a− 2d)

(dr + a− d)(dr − ar − d)
,

−(r − 1)(a− 2d)2

(dr + a− d)(dr − ar − d)
− 1

)

or

(s, t) =

(
−

√
r(r + 1)(a− 2d)

(dr + a− d)(dr − ar − d)
,

r(r − 1)(a− 2d)2

(dr + a− d)(dr − ar − d)
− 1

)

for whichever case the square root is defined, prioritizing the second case if r = 0
and both are square. Here we take +

√
· to mean the non-negative square root,

and −
√
· to mean its negation. This formulation seems to have two advantages

over other ways to formulate Elligator 2 for this curve. First, the two cases are
very similar, requiring only very small adjustments for the square vs. nonsquare
cases. Second, the formula is invariant under the parameter involution (a, d)↔
(−a, d − a) which preserves J but swaps the untwisted and twisted Edwards
curves. This means that if one implementor uses (a, d) and another chooses
(−a, d−a), then even their Elligator 2 implementations will remain compatible.



The map to J can easily be computed as follows:

r ← nr20

D ← (dr + a− d) · (dr − ar − d)

N ← (r + 1) · (a− 2d)

c, e←
{

+1, 1/
√
ND if ND is square

−1, nr0/
√
nND otherwise

s← c · |N · e|
t← −c ·N · (r − 1) · ((a− 2d) · e)2 − 1

Note that if D or N is 0, the result should be some 2-torsion point ether at
(0,±1) or at infinity. In fact, a näıve inverse square root algorithm will return
e = 0 in this case, resulting in the point (0,−1) which is indeed a 2-torsion point.
Since we are quotienting out the 2-torsion group, this result is satisfactory.

To map to the Edwards or Montgomery curves, one simply applies the isogeny
from J .

To invert the Elligator 2 map, let c = sign s and note that

nr20 = r =
(2d− a)s2 + c(t+ 1)

(2d− a)s2 − c(t+ 1)

If
√
r/n exists, then it is the inverse; otherwise, there is no inverse. Since the

group in question isn’t J but rather J /J [2], to ensure a random sample E−1(P ),
one must add a random 2-torsion element to P .
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