
Quantum security proofs using semi-classical oracles

Andris Ambainis
University of Latvia

Mike Hamburg
Rambus Security Division

Dominique Unruh
University of Tartu

September 24, 2018

Abstract

We present an improved version of the one-way to hiding (O2H) lemma by
Unruh, J ACM 2015. Our new O2H lemma gives higher flexibility (arbitrary joint
distributions of oracles and inputs, multiple reprogrammed points) as well as tighter
bounds (removing square-root factors, taking parallelism into account).

1 Introduction

[This is a draft. While the technical parts are finished, the introduction lacks
a discussion of the background, motivation, and related work. It is suitable
mainly for readers who are already familiar with the idea of O2H lemmas.
We make this version available at this stage to give researchers developing
proofs using O2H lemmas to use our lemmas already now. Comments are
highly welcome.]

We present an improved version of the one-way to hiding (O2H) lemma from [Unr15].
Our improved O2H lemma has the following features:

• Non-uniform random oracles. The random oracle that is reprogrammed does
not have to be a uniformly random function. We allow any distribution of oracles,
e.g., invertible permutations, ideal ciphers, etc.

• Multiple reprogrammed points. We can reprogram the oracle in more than a
single point. That is, we can reprogram the random oracle at a set of positions
S and then bound the probability that the adversary detects this reprogramming
with a single application of the O2H lemma.

• Arbitrary joint distributions. We allow the distribution of reprogrammed loca-
tions and of the adversary’s input to be arbitrarily correlated with the distribution
of the random oracle. This is especially important if the reprogrammed location
depends on the random oracle (e.g., reprogramming H(x) where x := H(r) for
random r).

1

• Tighter bounds for guessing games. Our O2H lemma bounds the difference
of the square-roots of the adversary probabilities between two games. In many
cases involving guessing games (i.e., where we intend to show that the probability
of a certain event is negligible) this leads to bounds that are quadratically better.

• Tighter bounds using semi-classical oracles. We introduce a new technique,
called semi-classical oracles. By applying the O2H lemma to games involving
semi-classical oracles, we can again get better bounds in some cases. (Whether
some advantage is gained depends very much on the specific proof in which the
O2H lemma is used.) Introducing semi-classical oracles is a bit more complicated
(or at least involves some non-standard oracles), so we give variants of our lemma
both with and without semi-classical oracles to give the user the flexibility to chose.

• Query depth. Our O2H lemma distinguishes query number q and query depth d.
Thus, for cases in which the adversary has a high parallelism, we get better bounds
(and for sequential adversaries nothing is lost by setting d := q).

2 Preliminaries

For basics of quantum computing, we refer to a standard textbook such as [NC00].

Given a function f : X → Y , we model a quantum-accessible oracle O for f as a unitary
transformation Uf operating on two registers Q,R with spaces CX and CY , respectively,
where Uf : |q, r〉 7→ |q, r ⊕ f(x)〉, where ⊕ is some involutive group operation (e.g., XOR
if Y is a set of bitstrings).

A quantum oracle algorithm is an algorithm that can perform classical and quantum
computations, and that can query classical and/or quantum-accessible oracles. We allow
an oracle algorithm A to perform oracle queries in parallel. We say A is a q-query
algorithm if it performs at most q oracle queries (counting parallel queries as separate
queries), and has query depth d if it invokes the oracle at most d times (counting parallel
queries as one query). For example, if A performs 5 parallel queries followed by 7 parallel
queries, we have q = 12 and d = 2.

The distinction between query number and query depth is important because realistic
brute-force attacks are highly parallel. It’s easy to do 264 hash queries on parallel
machines — the Bitcoin network does this several times a minute — but it would take
millennia to do them sequentially. Query depth is also important because early quantum
computers are likely to lose coherency quickly, limiting them to shallow circuits. Our
model does not capture this limitation because it does not differentiate between a deep
quantum computation and several shallow ones with measurements between. But we
hope that future work can account for coherency using a notion of query depth.

We will make use of the well-known fact that any quantum oracle algorithm AO(z) can be
transformed into a unitary quantum oracle algorithm with constant factor computational

2

overhead and the same query number and query depth. Such an algorithm has registersQA

(for its state), and Q1, . . . , Qn and R1, . . . , Rn for query inputs and outputs, respectively.
It starts with an initial state |Ψ〉 (that may depend on the input z). Then, A alternatingly
applies a fixed unitary U on all registers (independent of z and O), and performs parallel
queries. Parallel queries apply the oracle O to Qi, Ri for each i = 1, . . . , n. (I.e., if O
is implemented by Uf , we apply Uf ⊗ · · · ⊗ Uf between U -applications.) Finally, the
classical output of AO(z) is the result of a projective measurement on the final state of
A. This implies that in many situations, we can assume our algorithms to be unitary
without loss of generality.

3 Semi-classical oracles

Classical oracles measure both their input and their output, whereas quantum-accessible
oracles measure neither. We define semi-classical oracles, which measure their output
but not their input. Formally, a semi-classical oracle OSC

f for a function f with domain

X and codomain Y is queried with two registers: an input register Q with space CX and
an output register R with space CY .

When queried with a value |x〉 in Q, the oracle performs a measurement of f(x). Formally,
it performs the measurements corresponding to the projectors My : y ∈ Y where
My :=

∑
x∈S:f(x)=y|x〉〈x|. The oracle then initializes the R register to |y〉 for the

measured y.

In this paper, the function f is always the indicator function fS for a set S, where
fS(x) = 1 if x ∈ S and 0 otherwise. For brevity, we overload the notation OSC

S to be the
semiclassical oracle for this index function.

In the execution of a quantum algorithm AO
SC
S , let Find be the event that OSC

S ever
returns |1〉. This is a well-defined classical event because OSC

S measures its output. This
event is called Find because if it occurs, the simulator could immediately stop execution
and measure the input register Q to obtain a value x ∈ S.

If H is some other quantum-accessible oracle with domain X and codomain Y , we define
H \ S (“H punctured on S”) as an oracle which, on input x, first queries OSC

S (x) and
then H(x). The following lemma shows why this is called “puncturing”: when Find
doesn’t occur, the outcome of AH\S is independent of H(x) for all x ∈ S. Those values
are effectively removed from H’s domain.

Lemma 1 Let S ⊆ X be random. Let G,H : X → Y be random functions satisfying
∀x /∈ S. G(x) = H(x). Let z be a random bitstring. (S,G,H, z may have arbitrary joint
distribution.)

Let A be a quantum oracle algorithm (not necessarily unitary).

Let E be an arbitrary (classical) event.

3

Then Pr[E ∧ ¬Find : x← AH\S(z)] = Pr[E ∧ ¬Find : x← AG\S(z)].

Semi-classical oracles allow us to split the O2H theorem into two parts. The first part
bounds how much a quantum adversary’s behavior changes when a random oracle is
punctured on S based on Pr [Find]:

Theorem 1 (Semi-classical O2H) Let S ⊆ X be random. Let G,H : X → Y be
random functions satisfying ∀x /∈ S. G(x) = H(x). Let z be a random bitstring. (S,G,H, z
may have arbitrary joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)] (1)

Pfind := Pr[Find : AG\S(z)]
Lem. 1
= Pr[Find : AH\S(z)]

Then
|Pleft − Pright| ≤ 2

√
d · Pfind and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2
√
d · Pfind (2)

The theorem also holds with bound
√

(d+ 1)Pfind for the following alternative definitions
of Pright:

Pright := Pr[b = 1 : b← AH\S(z)], (3)

Pright := Pr[b = 1 ∧ ¬Find : b← AH\S(z)], (4)

Pright := Pr[b = 1 ∧ ¬Find : b← AG\S(z)], (5)

Pright := Pr[b = 1 ∨ Find : b← AH\S(z)], (6)

Pright := Pr[b = 1 ∨ Find : b← AG\S(z)]. (7)

The proof is given in Appendix B.

The second part relates Pr [Find] to the guessing probability:

Theorem 2 (Search in semi-classical oracle) Let A be any quantum oracle algo-
rithm making at most q queries to a semi-classical oracle with domain X. Let S ⊆ X
and z ∈ {0, 1}∗. (S, z may have arbitrary joint distribution.)

Let B be an algorithm that on input z chooses i
$← {1, . . . , d}; runs AO

SC
∅ (z) until (just

before) the i-th query; then measures all query input registers in the computational basis
and outputs the set T of measurement outcomes.

Then
Pr[Find : AO

SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)] (8)

4

The proof is given in Appendix C.

In the simple but common case that the input of A is independent of S, we get the
following corollary:

Corollary 1 Suppose that S and z are independent, and that A is a q-query algorithm.
Let Pmax := maxx∈X Pr[x ∈ S]. Then

Pr[Find : AO
SC
S (z)] ≤ 4q · Pmax. (9)

For example, for uniform x ∈ {1, . . . , N}, AO
SC
{x} finds x with probability ≤ 4q/N .

Proof. A makes q queries at depth d, so Exp[card (T) : T ← B(z)] ≤ q/d by definition.
Therefore

Pr[S ∩ T 6= ∅ : T ← B(z)] ≤ (q/d) · Pmax

Then by Theorem 2,

Pr[Find : AO
SC
S (z)] ≤ 4d · (q/d) · Pmax = 4q · Pmax. �

3.1 Regular O2H, revisited

Note that the use of semi-classical oracles in Theorem 1 is entirely optional. If we use
variant (2) and apply Theorem 2 to Pfind, we get a variant of Theorem 1 that does not
involve semi-classical oracles. The result is essentially the following Theorem 3. However,
proving Theorem 3 directly gives a better bound: 2d

√
Pguess instead of 4d

√
Pguess .

Theorem 3 (One-way to hiding, probabilities) Let S ⊆ X be random. Let G,H :

X → Y be random functions satisfying ∀x /∈ S.G(x) = H(x). Let z be a random bitstring.
(S,G,H, z may have arbitrary joint distribution.)

Let A be quantum oracle algorithm with query depth d (not necessarily unitary).

Let BH be an oracle algorithm that on input z does the following: pick i
$← {1, . . . , d},

run AH(z) until (just before) the i-th query, measure all query input registers in the
computational basis, output the set T of measurement outcomes.

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)]

Pguess := Pr[S ∩ T 6= ∅ : T ← BH(z)]

5

Then

|Pleft − Pright| ≤ 2d
√
Pguess and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2d
√
Pguess

The same result holds with BG instead of BH in the definition of Pguess.

As we said already, except for a factor of 2 in the bound, this is an immediate corollary
of Theorem 1 and Theorem 2. To get the slightly better bound in Theorem 3, we use a
direct proof. See Appendix D.

The original O2H [Unr15, Lemma 6.2] is an immediate consequence of Theorem 3: Pick
H uniformly, pick x, y uniformly, set G(·) := y, I := {x} and z := (x,H(x)). Then Pleft

and Pguess are as in the original O2H. Pright is Pr[b = 1 : b ← AH(x:=y)(x,H(x))], but
this is the same as Pr[b = 1 : b← AH(x, y)].

This also implies that using Theorem 1 and Theorem 2 instead can never give worse
bounds than the original O2H, except by a factor of 2.

4 Examples how to use the O2H lemmas

To illustrate the use of the lemmas from the previous section, we give two illustrative
examples: hardness of searching in a sparse random function, and hardness of inverting a
random oracle with leakage (in the sense that an only computationally secret encryption
of the preimage is given to the adversary).

4.1 Hardness of searching in a sparse random function

Consider the following setting: H : X → {0, 1} is a random function where for each x,
H(x) = 1 with probability ≤ λ (not necessarily independently). What is the probability
to find x with H(x) = 1 in q queries? We will prove an upper bound.

We solve this problem using the semi-classical O2H technique introduced by Theorem 1.
Let A be a q-query algorithm with depth d. We want to bound Pr[H(x) = 1 : x← AH()].
We do this by a series of games.

Game 1 x← AH(). Measure x. Then A wins if H(x) = 1.

We would like to apply Theorem 1 to this game. But it doesn’t work well to apply it
to AH because H is also used outside of A. Therefore, we use a different but obviously
equivalent game:

Game 2 Define ÂH() to run x ← AH(); measure x; and return b := H(x). Game 2
runs b← ÂH(). Then A wins if b = 1.

6

Note that Â is a (q + 1)-query algorithm with depth d+ 1.

We can apply the semi-classical O2H lemma (Theorem 1), variant (5)1 to this game,
where G := 0 (the constant zero function) and S := {x : H(x) = 1}. This gives us:∣∣∣√Pr[b = 1 : Game 2]︸ ︷︷ ︸

Pleft

−
√

Pr[b = 1 ∧ ¬Find : Game 3]︸ ︷︷ ︸
Pright

∣∣∣
≤
√

(d+ 2) Pr[Find : Game 3]︸ ︷︷ ︸
Pfind

(10)

with

Game 3 Run b← ÂG\S(). Then A wins if b = 1 and not Find.

which is equivalent to

Game 4 x← AG\S(); set b← (G \ S)(x). Then A wins if b = 1 and not Find.

What has happened so far? We have used the O2H lemma to rewrite a game with access
to an oracle H (Game 1) into the same game with a different oracle G = 0 (Game 4)
(“right game”). The new oracle is considerably simpler: in this specific case, it is all zero.
The difference between the two games is bounded by (10) in terms of how hard it is to
find an element in the set S (the “marked elements”), i.e., a position where G and H
differ (the “finding game”). This is the typical way of applying an O2H lemma: Replace
the oracle H by something simpler, continue the game-based proof from the right game,
and additionally perform a second game-based proof to bound the probability of finding
a marked element in the finding game.

However, there are several crucial differences to the use of prior O2H lemmas (e.g.,
[Unr15]). First, prior O2H lemmas required G and H to be uniformly random functions,
and to differ only at a single location x. But here H is not assumed to be uniform, and
it differs from G at more than a single input (i.e. at the entire set S). This allows us to
analyze search problems with multiple targets.

Second, (10) has square roots on the left-hand side. This is optional: Theorem 1 also gives
a bound without square roots. In our example, since Pright is very small, the square-root
variant gives smaller bounds for Pleft.

Third, the finding game is expressed using semi-classical oracles. This is never a limitation
because we can always replace the semi-classical oracles by quantum-accessible ones
using Theorem 2 (which then gives bounds comparable to the O2H from [Unr15]).
However, as we will see in the next section, in some cases semi-classical oracles give
better bounds.

1Theorem 1 gives us different options how to define the right game. Conceptually simplest is variant
(2) (it does not involve a semi-classical oracle in the right game), but it does not apply in all situations.
The basic idea behind all variants is the same, namely that the adversary gets access to an oracle G that
behaves differently on the set S of marked elements.

7

In our case, we trivially have Pr[G(x) = 1 ∧ ¬Find : Game 4] = 0 since G = 0.

However, analyzing Pr[Find : Game 3] is less trivial. At the first glance, it seems that
having access to the oracle G = 0 yields no information about S, and thus finding an
element of S is down to pure luck, and cannot succeed with probability greater than
(q + 1)λ. But in fact, computing G \ S requires measuring whether each query is in S.
The measurement process can leak information about S. Appendix E shows that at least
in some cases, it is possible to find elements of S with greater probability than (q + 1)λ.
Fortunately, we have a result for this situation, namely Corollary 1, which shows that
Pr[Find : Game 4] ≤ 4(q + 1)λ.

Plugging this into (10), we get

Pr[H(x) = 1 : Game 1] ≤ 4(d+ 2)(q + 1)λ.

Without the square roots on the left-hand side of (10), we would get only the bound√
4(d+ 2)(q + 1)λ.

We summarize what we have proven in the following lemma:

Lemma 2 (Search in unstructured function) Let H be a random function, drawn
from a distribution such that Pr[H(x) = 1] ≤ λ for all x. Let A be a q-query adversary
with query depth d. Then Pr[H(x) = 1 : b← AH()] ≤ 4(d+ 2)(q + 1)λ.

While this is a simple consequence of our O2H technique, we are not aware that this
bound was already presented in the literature. While [Zal99] already showed a trade-off
between parallelism and query number in unstructured quantum search. However, our
result gives an explicit (and tight) success probability and applies even to functions whose
outputs are not i.i.d. For the special case of no-parallelism (d = q) and i.i.d. functions,
the best known bound was [HRS16, Theorem 1] which we improve upon by a factor
of 2.

4.2 Hardness of inverting a random oracle with leakage

The previous example considered a pure query-complexity problem, searching in a random
function. It can easily be solved with other techniques (giving slightly different bounds).
Where O2H lemmas shine is the combination of computational hardness and random
oracles. The following example illustrates this.

Let E be a randomized algorithm taking input from a space X, such that it is difficult
to distinguish the distributions

D1 := {(x,E(x)) : x
$← X} and D0 := {(x1, E(x2)) : (x1, x2)

$← X}

For a quantum algorithm B, define its E-distinguishing advantage as

AdvIND−E(B) :=

∣∣∣∣∣ Pr
[
1← B(x, e) : (x, e)← D1

]
− Pr

[
1← B(x, e) : (x, e)← D0

] ∣∣∣∣∣
8

For example, E could be IND-CPA-secure encryption. Let H : X → Y be a random
oracle which is independent of E. How hard is it to invert H with a leakage of E? That
is, given a quantum oracle algorithm A, we want to bound

AdvOW-LEAK-E(A) := Pr
[
AH(H(x), E(x)) = x : x

$← X
]

We can do this using a series of games. For brevity, we will go into slightly less detail than
in subsection 4.1. Let wi be the probability that the adversary wins Game i.

Game 0 (Original) x
$← X;x′ ← AH(H(x), E(x)). The adversary wins if x′ = x.

Now choose a random y
$← Y , and set a different random oracle G := H(x := y) which is

the same as H on every input except S := {x}. We can define a new game where the
adversary has access to G \ S:

Game 1 (Punctured, first try) x
$← X;x′ ← AG\{x}(H(x), E(x)). The adversary

wins if x′ = x and not Find.

Applying Theorem 1 variant (5), we find that∣∣∣∣∣∣∣∣
√

Pr[x′ = x : Game 0]︸ ︷︷ ︸
Pleft=w0

−
√

Pr[x′ = x ∧ ¬Find : Game 1]︸ ︷︷ ︸
Pright=w1

∣∣∣∣∣∣∣∣
≤
√

(d+ 1)Pr [Find : Game 1]︸ ︷︷ ︸
Pfind

Unlike in subsection 4.1, this time we do not have a trivial bound for w1. We could
bound it in terms of distinguishing advantage against E. But let’s instead try to make
this game more like the ones in subsection 4.1: we can cause the adversary to Find
instead of winning. To do this, we just apply an extra hash operation. Let ÂH(y, e) be
the algorithm which runs x′ ← AH(y, e); computes H(x′) and ignores the result; and
then returns x′. Then Â performs q + 1 queries at depth d + 1. This gives us a new
game:

Game 2 (Original with extra hash) x
$← X;x′ ← ÂH(H(x), E(x)). The adversary

wins if x′ = x.

Clearly w2 = w0. The new punctured game is also similar:

Game 3 (Punctured, extra hash) x
$← X;x′ ← ÂG\{x}(H(x), E(x)). The adversary

wins if x′ = x and not Find.

Applying Theorem 1 variant (5) as before gives

|
√
w3 −

√
w2| ≤

√
(d+ 2)Pr [Find : Game 3] (11)

9

But the adversary cannot win Game 3: the extra hash query triggers Find if x′ = x,
and the adversary does not win if Find. Therefore w3 = 0. Plugging this into (11) and
squaring both sides gives:

w0 = w2 ≤ (d+ 2)Pr [Find : Game 3] (12)

It remains to bound the right-hand side. We first note that in Game 3, the value H(x) is
only used once, since the adversary does not have access to H(x): it only has access to
G, which is the same as H everywhere except x. So Game 3 is the same as if H(x) is
replaced by a random value:

Game 4 (No H(x)) Set x
$← X; y

$← Y ; ÂG\{x}(y,E(x)). We don’t care about the
output of Â, but only whether it Finds.

Clearly Pr [Find : Game 4] = Pr [Find : Game 3]. Finally, we apply the indistinguishability
assumption by comparing to the following game:

Game 5 (IND-E challenge) (x1, x2)
$← X; y

$← Y ; ÂG\{x1}(y,E(x2)).

Let B(x, e) be an algorithm which chooses y
$← Y ; runs ÂG\{x}(y, e); and returns 1 if

Find and 0 otherwise. Then B runs in about the same time as A plus (q+ 1) comparisons.
If (y, e) are drawn from D1, then this experiment is equivalent to Game 4, and it they
are drawn from D0 then it is equivalent to Game 5. Therefore B is a distinguisher for E
with advantage exactly

AdvIND−E(B) = |Pr [Find : Game 5]− Pr [Find : Game 4]| (13)

Furthermore, in Game 5, the oracle G is punctured at x1, which is uniformly random
and independent of everything else in the game. So by Theorem 2,

Pr [Find : Game 5] ≤ 4(q + 1)/card (X)

Combining this with (12) and (13), we have

AdvOW-LEAK-E(A) ≤ (d+ 2)AdvIND−E(B) +
4(d+ 2)(q + 1)

card (X)

This is a much better bound than we would have gotten without using semi-classical
oracles (i.e., using Theorem 3 or the O2H lemma from [Unr15]). In front of AdvIND−E(B),
we only have the factor d+ 2. In contrast, if we had applied Theorem 2 directly after
using Theorem 1, then we would have gotten a factor of O(qd) in front of AdvIND−E(B).
If we had used the O2H from [Unr15], then we would have gotten an even greater bound
of O(q

√
AdvIND−E(B) + 1/card (X)). However, this bound with semi-classical oracles

assumes indistinguishability, whereas an analysis with Theorem 3 would only require E
to be one-way.

10

5 Acknowledgements

Thanks to Daniel Kane and Eike Kiltz for helpful discussions. Unruh was supported
by institutional research funding IUT2-1 of the Estonian Ministry of Education and
Research, the United States Air Force Office of Scientific Research (AFOSR) via AOARD
Grant ”Verification of Quantum Cryptography” (FA2386-17-1-4022), and the Mobilitas
Plus grant MOBERC12 of the Estonian Research Council.

References

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target
attacks in hash-based signatures. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume
9614 of LNCS, pages 387–416. Springer, Heidelberg, March 2016. doi:

10.1007/978-3-662-49384-7_15.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, first edition, 2000.

[Unr15] Dominique Unruh. Revocable quantum timed-release encryption. Journal of
the ACM, 62(6):49:1–76, 2015. Preprint on IACR ePrint 2013/606.

[Zal99] Christof Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A,
60:2746–2751, Oct 1999. URL: https://arxiv.org/abs/quant-ph/9711070,
doi:10.1103/PhysRevA.60.2746.

11

http://dx.doi.org/10.1007/978-3-662-49384-7_15
http://dx.doi.org/10.1007/978-3-662-49384-7_15
https://arxiv.org/abs/quant-ph/9711070
http://dx.doi.org/10.1103/PhysRevA.60.2746

A Auxiliary lemmas

The fidelity F (σ, τ) between two density operators is tr
√√

στ
√
σ, the trace distance

TD(σ, τ) is defined as 1
2 tr|σ − τ |, and the Bures distance B(τ, σ) is

√
2− 2F (τ, σ).

Lemma 3 For states |Ψ〉, |Φ〉 with ‖|Ψ〉‖ = ‖|Φ〉‖ = 1, we have

F (|Ψ〉〈Ψ|, |Φ〉〈Φ|) ≥ 1− 1

2
‖|Ψ〉 − |Φ〉‖2

so that
B(|Ψ〉〈Ψ|, |Φ〉〈Φ|) ≤ ‖|Ψ〉 − |Φ〉‖

Proof. We have

‖|Ψ〉 − |Φ〉‖2 = (〈Ψ| − 〈Φ|)(|Ψ〉 − |Φ〉) = ‖|Ψ〉‖2 + ‖|Φ〉‖2 − 〈Ψ|Φ〉 − 〈Φ|Ψ〉

= 2− 2<(〈Ψ|Φ〉) ≥ 2− 2|〈Ψ|Φ〉| (∗)
= 2− 2F (|Ψ〉〈Ψ|, |Φ〉〈Φ|)

where < denotes the real part, and (∗) is by definition of the fidelity F (for pure states).
Thus F (|Ψ〉〈Ψ|, |Φ〉〈Φ|) ≥ 1− 1

2‖|Ψ〉 − |Φ〉‖
2 as claimed. The second inequality follows

from the definition of Bures distance. �

Lemma 4 (Distance measures vs. measurement probabilities) Let ρ1, ρ2 be
density operators (with tr ρi = 1). Let M be a binary measurement (e.g., represented as
a POVM). Let Pi be the probability that M returns 1 when measuring ρi.

Then √
P1P2 +

√
(1− P1)(1− P2) ≥ F (ρ1, ρ2) (14)

Also, ∣∣∣√P1 −
√
P2

∣∣∣ ≤ B(ρ1, ρ2). (15)

Furthermore,
|P1 − P2| ≤ TD(ρ1, ρ2) ≤ B(ρ1, ρ2). (16)

Proof. In this proof, given a probability P , let P̄ := 1− P . Let E be the superoperator
that maps ρ to the classical bit that contains the result of measuring ρ using M . That is,

for every density operator ρ with tr ρ = 1, E(ρ) =
(
p 0
0 p̄

)
where p is the probability that

M returns 1 when measuring ρ.

Then ρ′i := E(ρi) =
(
Pi 0
0 P̄i

)
for i = 1, 2. We then have

F (ρ1, ρ2)
(∗)
≤ F (ρ′1, ρ

′
2)

(∗∗)
=
∥∥∥√ρ′1√ρ′2∥∥∥

tr

= tr

(√
P1P2 0

0
√

P̄1P̄2

)
=
√
P1P2 +

√
P̄1P̄2

12

where (∗) is due to the the monotonicity of the fidelity [NC00, Thm. 9.6], and (∗∗) is
the definition of fidelity. This shows (14). To prove (15), we compute:(√

P1 −
√
P2

)2
= P1 + P2 − 2

√
P1P2

≤ P1 + P2 − 2
√
P1P2 +

(√
P̄1 −

√
P̄2

)2

= 2− 2
√
P1P2 − 2

√
P̄1P̄2

(14)

≤ 2− 2F (ρ1, ρ2)
(∗)
= B(ρ1, ρ2)2

where (∗) is by definition of the Bures distance. This implies (15).

The first inequality in (16) is well-known (e.g., [NC00, Thm. 9.1]). For the second part,
we calculate

TD(ρ, τ)
(∗)
≤
√

1− F (ρ, τ)2 =

√
1 + F (ρ, τ)

2
·
√

2− 2F (ρ, τ)

=

√
1 + F (ρ, τ)

2
·B(ρ, τ)

(∗∗)
≤ B(ρ, τ)

Here the inequality marked (∗) is shown in [NC00, (9.101)], and (∗∗) is because 0 ≤
F (ρ, τ) ≤ 1. �

B Proof of Theorem 1

In the following, let H : X → Y , S ⊆ X, z ∈ {0, 1}∗.

Lemma 5 (O2H in terms of pure states) Fix H,S, z. Let AH(z) be a unitary quan-
tum oracle algorithm of query depth d. Let QA denote the register containing all of A’s
state.

Let L be a quantum register with space C2d (for the “query log”).

Let BH,S(z) be the unitary algorithm on registers QA, L that operates like AH(z), except:

• It initializes the register L with |0 . . . 0〉.
• When A performs its i-th set of parallel oracle queries on input/output regis-

ters (Q1, R1), . . . , (Qn, Rn) that are part of QA, B instead first applies US on
(Q1, . . . , Qn, L) and then performs the oracle queries. Here US is defined by:

US |x1, . . . , xn〉|l〉 :=

{
|x1, . . . , xn〉|l〉 (every xj /∈ S),

|x1, . . . , xn〉|flipi(l)〉 (any xj ∈ S)

Let |Ψleft〉 denote the final state of AH(z), and |Ψright〉 the final state of BH,S(z).

Let P̃find be the probability that a measurement of L in the state |Ψright〉 returns 6= 0.

(Formally,
∥∥(I ⊗ (I − |0〉〈0|))|Ψright〉

∥∥2
.)

13

Then ∥∥|Ψleft〉 ⊗ |0〉 − |Ψright〉
∥∥2 ≤ (d+ 1)P̃find.

Proof. We first define a variant Bcount of the algorithm B that, instead of keeping a log
of the successful oracle queries (as B does in L), just counts the number of successful
oracle queries (in a register C). Specifically:

Let C be a quantum register with space C{0,...,d}, i.e., C can store states |0〉, . . . , |d〉.
Let BH,S

count(z) be the unitary algorithm on registers QA, S that operates like AH(z),
except:

• It initializes the register C with |0〉.
• When A performs its i-th set of parallel oracle queries on input/output registers

((Q1, R1), . . .) that are part of QA, B instead first applies U ′S on (Q1, . . . , Qn), C
and then performs the oracle queries. Here U ′S is defined by:

U ′S |x1, . . . , xn〉|c〉 :=

{
|x1, . . . , xn〉|c〉 (every xj /∈ S),

|x1, . . . , xn〉|c+ 1 mod d+ 1〉 (any xj ∈ S)

Note that the mod d+ 1 part of the definition of U ′S has no effect on the behavior of B̃
because US is applies only d times. However, the mod d + 1 is required so that US is
unitary.

Consider the state |Ψcount〉 at the end of the execution BH,S
count(z). This may be writ-

ten

|Ψcount〉 =
d∑

i=0

|Ψ′i〉|i〉C . (17)

for some (non-normalized) states |Ψ′i〉 on QA.

Consider the linear (but not unitary) map N ′ : |x〉|y〉 7→ |x〉|0〉. Obviously, N ′ commutes
with the oracle queries and with the unitary applied by A between queries (since those
unitaries do not operate on C.) Furthermore N ′U ′S = N ′, and the initial state of Bcount is
invariant under N ′. Thus N ′|Ψcount〉 is the same as the state we get if we execute Bcount

without the applications of U ′S . But that state is |Ψleft〉|0〉C because the only difference
between Bcount and A is that Bcount initializes C with |0〉 and applies U ′S to it.

So we have
d∑

i=0

|Ψ′i〉|0〉C = N |Ψcount〉 = |Ψleft〉|0〉C

and hence

|Ψleft〉 =
d∑

i=0

|Ψ′i〉. (18)

14

The state |Ψright〉 is a state on QA, L and thus can be written as

|Ψright〉 =
∑

l∈{0,1}q
|Ψl〉|l〉L (19)

for some (non-normalized) states |Ψl〉 on QA.

Furthermore, both |Ψcount〉 and |Ψright〉, when projected onto |0〉 in register C/L, re-
spectively, result in the same state, namely the state corresponding to no query to OSC

S

succeeding. By (17) and (19), the result of that projection is |Ψ0〉|0〉L and |Ψ′0〉|0〉C ,
respectively. Hence

|Ψ0〉 = |Ψ′0〉. (20)

Furthermore, the probability that no query succeeds is the square of the norm of that
state. Hence ∥∥|Ψ0〉

∥∥2
= 1− P̃find. (21)

We have

d∑
i=0

∥∥|Ψ′i〉∥∥2
=

d∑
i=0

∥∥|Ψ′i〉|i〉C∥∥2
=
∥∥∥ d∑
i=0

|Ψ′i〉|i〉C
∥∥∥2 (17)

=
∥∥|Ψcount〉

∥∥2
= 1.

∑
l∈{0,1}d

∥∥|Ψl〉
∥∥2

=
∑

l∈{0,1}d

∥∥∥|Ψl〉|l〉L
∥∥∥2

=
∥∥∥∑
l∈{0,1}d

|Ψl〉|l〉L
∥∥∥2 (19)

=
∥∥|Ψright〉

∥∥2
= 1.

Thus

d∑
i=1

∥∥|Ψ′i〉∥∥2
= 1−

∥∥|Ψ′0〉∥∥2 (21)
= P̃find,

∑
l∈{0,1}d

l 6=0

∥∥|Ψl〉
∥∥2

= 1−
∥∥|Ψ0〉

∥∥2 (21)
= P̃find. (22)

Therefore∥∥∥|Ψright〉 − |Ψleft〉|0〉L
∥∥∥2 (19)

=
∥∥∥(|Ψ0〉 − |Ψleft〉

)
|0〉+

∑
l∈{0,1}d

l 6=0

|Ψl〉|l〉
∥∥∥2

=
∥∥∥|Ψ0〉 − |Ψleft〉

∥∥∥2
+

∑
l∈{0,1}d

l 6=0

∥∥|Ψl〉
∥∥2 (22)

=
∥∥∥|Ψ0〉 − |Ψleft〉

∥∥∥2
+ P̃find

(20),(18)
=

∥∥∥ d∑
i=1

|Ψ′i〉
∥∥∥2

+ P̃find

(∗)
≤
(d∑
i=1

∥∥∥|Ψ′i〉∥∥∥)2
+ P̃find

(∗∗)
≤ d ·

d∑
i=1

∥∥∥|Ψ′i〉∥∥∥2
+ P̃find

(22)
= dP̃find + P̃find = (d+ 1)P̃find.

Here (∗) uses the triangle inequality, and (∗∗) the AM-QM (or Jensen’s) inequality. This
is the inequality claimed in the lemma. �

15

Lemma 6 (O2H in terms of mixed states) Let H, I, z be random. (With some
joint distribution.)

Let A be an algorithm with query depth d. Let B and Pfind be as in Theorem 1.

Let ρleft denote the final state of A.

Let ρright denote the final state of QA, L, where QA is the register used for its state by
B (or A), and L is a register that contains the log of the responses of OSC

I . If the i-th
query to OSC

I returns `i, then L contains |`1 . . . `q〉 at the end of the execution of B.

Then F (ρleft⊗|0〉〈0|, ρright) ≥ 1− 1
2(d+1)Pfind and B(ρleft⊗|0〉〈0|, ρright) ≤

√
(d+ 1)Pfind.

Proof. Without loss of generality, we can assume that A is unitary: If A is not unitary,
we can construct a unitary variant of A that uses an extra auxiliary register Z, and later
trace out that register again from the states ρleft and ρright.

Let
∣∣ΨHIz

left

〉
be the state

∣∣Ψleft

〉
from Lemma 5 for specific values of H, I, z. And analo-

gously for
∣∣ΨHIz

right

〉
and P̃HIz

find .

Then ρleft = ExpHIz[
∣∣ΨHIz

left

〉〈
ΨHIz

left

∣∣]
Furthermore, if we define ρ′right := ExpHIz[|ΨHIz

right〉〈ΨHIz
right|], then ρright = EL(ρ′right) where

EL is the quantum operation that performs a measurement in the computational basis
on the register L.

And Pfind = ExpHIz[P̃
HIz
find].

Then

F (ρleft ⊗ |0〉〈0|, ρright) = F
(
EL(ρleft ⊗ |0〉〈0|), EL(ρ′right)

)
(∗)
≥ F

(
ρleft ⊗ |0〉〈0|, ρ′right

)
= F

(
Exp
HIz

[∣∣ΨHIz
left

〉〈
ΨHIz

left

∣∣⊗ |0〉〈0|],Exp
HIz

[∣∣ΨHIz
right

〉〈
ΨHIz

right

∣∣])
(∗∗)
≥ Exp

HIz

[
F
(∣∣ΨHIz

left

〉〈
ΨHIz

left

∣∣⊗ |0〉〈0|, ∣∣ΨHIz
right

〉〈
ΨHIz

right

∣∣)]
Lem. 3

≥ 1− 1
2 Exp

HIz

[∥∥|ΨHIz
left 〉 ⊗ |0〉 − |ΨHIz

right〉
∥∥2
]

Lem. 5

≥ 1− 1

2
Exp
HIz

[
(d+ 1)P̃HIz

find

]
= 1− 1

2(d+ 1)Pfind.

Here (∗) follows from the monotonicity of the fidelity [NC00, Thm. 9.6], and (∗∗) follows
from the joint concavity of the fidelity [NC00, (9.95)]. This shows the first bound from
the lemma.

16

The Bures distance B is defined as B(ρ, τ)2 = 2(1− F (ρ, τ)). Thus

B(ρleft ⊗ |0〉〈0|, ρright)
2 = 2(1− F (ρleft ⊗ |0〉〈0|, ρright))

≤ 2(1− (1− 1
2(d+ 1)Pfind)) = (d+ 1)Pfind,

hence B(ρleft, ρright) ≤
√

(d+ 1)Pfind. �

Theorem 1 (Semi-classical O2H – restated) Let S ⊆ X be random. Let G,H :

X → Y be random functions satisfying ∀x /∈ S. G(x) = H(x). Let z be a random
bitstring. (S,G,H, z may have arbitrary joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)] (1)

Pfind := Pr[Find : AG\S(z)]
Lem. 1
= Pr[Find : AH\S(z)]

Then
|Pleft − Pright| ≤ 2

√
d · Pfind and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2
√
d · Pfind (2)

The theorem also holds with bound
√

(d+ 1)Pfind for the following alternative definitions
of Pright:

Pright := Pr[b = 1 : b← AH\S(z)], (3)

Pright := Pr[b = 1 ∧ ¬Find : b← AH\S(z)], (4)

Pright := Pr[b = 1 ∧ ¬Find : b← AG\S(z)], (5)

Pright := Pr[b = 1 ∨ Find : b← AH\S(z)], (6)

Pright := Pr[b = 1 ∨ Find : b← AG\S(z)]. (7)

Proof. We first prove the theorem using the definition of Pright from (3).

Let M be the measurement that measures, given the the register QA, L, what the output
b of A is. Here QA is the state space of A, and L is the additional register introduced in
Lemma 6. (Since A obtains b by measuring QA, such a measurement M exists.)

Let PM (ρ) denote the probability that M returns 1 when measuring a state ρ.

Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright) where ρleft and ρright are defined
in Lemma 6.

17

Then ∣∣∣Pleft − Pright

∣∣∣ =
∣∣∣PM (ρleft ⊗ |0〉〈0|)− PM (Pright)

∣∣∣
Lem. 4

≤ B(ρleft ⊗ |0〉〈0|, ρright)
Lem. 6

≤
√

(d+ 1)Pfind∣∣∣√Pleft −
√
Pright

∣∣∣ =
∣∣∣√PM (ρleft ⊗ |0〉〈0|)−

√
PM (Pright)

∣∣∣
Lem. 4

≤ B(ρleft ⊗ |0〉〈0|, ρright)
Lem. 6

≤
√

(d+ 1)Pfind.

This shows the theorem with the definition of Pright from (3).

Now we show the theorem using the definition of Pright from (4). Let M instead be the
measurement that measures whether b = 1 and L contains |0〉 (this means Find did not
happen). Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright), and the rest of the
proof is as in the case of (3).

Now we show the theorem using the definition of Pright from (6). Let M instead be the
measurement that measures whether b = 1 or L contains |x〉 for x 6= 0 (this means Find
did happen). Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright), and the rest of the
proof is as in the case of (3).

Now we show the theorem using the definition of Pright from (5). This follows immediately
by case (4), and the fact that Pr[b = 1 ∧ ¬Find : b← AH\S(z)] = Pr[b = 1 ∧ ¬Find : b←
AG\S(z)] by Lemma 1.

Now we show the theorem using the definition of Pright from (7). By Lemma 1,

Pr[b = 1 ∧ ¬Find : b← AH\S(z)] = Pr[b = 1 ∧ ¬Find : b← AG\S(z)] (23)

Pr[true ∧ ¬Find : b← AH\S(z)] = Pr[true ∧ ¬Find : b← AG\S(z)]. (24)

From (24), we get (by considering the complementary event):

Pr[Find : b← AH\S(z)] = Pr[Find : b← AG\S(z)]. (25)

Adding (23) and (25), we get

Pr[b = 1 ∨ Find : b← AH\S(z)] = Pr[b = 1 ∨ Find : b← AG\S(z)]. (26)

Then case (7) follows from case (6) and the fact (26).

Now we show the theorem using the definition of Pright from (2). Let

Pmid := Pr[b = 1 ∧ ¬Find : b← AH\S(z)],

P ′mid := Pr[b = 1 ∧ ¬Find : b← AG\S(z)],

P ′find := Pr[Find : AG\S(z)].

18

By the current lemma, case (4) (which we already proved), we have

|Pleft − Pmid| ≤
√

(d+ 1)Pfind, |Pleft − Pmid| ≤
√

(d+ 1)Pfind,

and by case (5), we also get

|Pright − P ′mid| ≤
√

(d+ 1)P ′find, |Pright − P ′mid| ≤
√

(d+ 1)P ′find,

Note that in the second case, we invoke the current lemma with G and H exchanged,
and our Pright is their Pleft.

By Lemma 1, Pmid = P ′mid and by (25), Pfind = P ′find. With this and the triangle
inequality, we get

|Pleft − Pright| ≤ 2
√

(d+ 1)Pfind, |Pleft − Pright| ≤ 2
√

(d+ 1)Pfind.

as required. �

C Proof of Theorem 2

In the following, let S ⊆ X, z ∈ {0, 1}∗.

Lemma 7 Fix S, z (S, z are not randomized in this lemma.) Let AH(z) be a unitary
oracle algorithm with query depth d.

Let B be an oracle algorithm that on input z does the following: pick i
$← {1, . . . , d},

runs AO
SC
∅ (z) until (just before) the i-th query, measure all query input registers in the

computational basis, output the set T of measurement outcomes.

Then
Pr[Find : AO

SC
S (z)] ≤ 4q · Pr[S ∩ T 6= ∅ : T ← B(z)].

Proof. Let |Ψi〉 be the (non-normalized) state of AO
SC
S (z) right after the i-th query in

the case that the first i queries return 0. That is, ‖|Ψi〉‖2 is the probability that the first
i queries return 0, and |Ψi〉/‖|Ψi〉‖ is the state conditioned on that outcome. Let |Ψ′i〉 be

the corresponding state of AO
SC
∅ (z), that is, |Ψ′i〉 is the state just after the ith query (or

before, since queries to OSC
∅ do not affect the state). Note that |Ψ0〉 = |Ψ′0〉 is the initial

state of A(z) (independent of the oracle).

From the state |Ψi〉, the algorithm A first applies a fixed unitary U that depends only
on A. Then it queries the semi-classical oracle OSC

S .

Let PS be the orthogonal projector projecting the query input registers Q1, . . . , Qn onto
states |T 〉 with S ∩ T 6= ∅, formally PS :=

∑
T s.t.S∩T 6=∅|T 〉〈T |. Thus ‖PSU |Ψi〉‖2 is

the probability of measuring T with S ∩ T 6= ∅ in registers Q1, . . . , Qn given the state
U |Ψi〉.

19

Then the i-th query to OSC
S applies I − PS to |Ψi〉. Therefore |Ψi+1〉 = (I −

PS)U |Ψi〉.

Let pi = 1 − ‖|Ψi〉‖2 be the probability that one of the first i queries returns 1, and
let

ri := pi + 2‖|Ψi〉 − |Ψ′i〉‖2 = 1− ‖|Ψi〉‖2 + 2‖|Ψi〉‖2 − 4<〈Ψ′i|Ψi〉+ 2 ‖|Ψ′i〉‖2︸ ︷︷ ︸
=1

= 3− 4<〈Ψ′i|Ψi〉+ ‖|Ψi〉‖2 (27)

Notice that r0 = 0 since |Ψ0〉 = |Ψ′0〉 and ‖|Ψ0〉‖ = 1. During the query, U |Ψi〉 is changed
to U |Ψi〉 − PSU |Ψi〉, and U |Ψ′i〉 stays the same, so that

|Ψi+1〉 = U |Ψi〉 − PSU |Ψi〉
|Ψ′i+1〉 = U |Ψ′i〉

Therefore,

‖|Ψi+1〉‖2 = ‖U |Ψi〉‖2 −
〈
Ψi

∣∣U †PSU
∣∣Ψi

〉
−
〈
Ψi

∣∣U †P †SU ∣∣Ψi

〉
+
〈
Ψi

∣∣U †P †SPSU
∣∣Ψi

〉
= ‖|Ψi〉‖2 −

〈
Ψi

∣∣U †PSU
∣∣Ψi

〉
(28)

because PS is a projector and thus P †SPS = P †S = PS . Likewise,

〈Ψ′i+1|Ψi+1〉 =
〈
Ψ′i
∣∣U †U ∣∣Ψi

〉
−
〈
Ψ′i
∣∣U †PSU

∣∣Ψi

〉
= 〈Ψ′i|Ψi〉 −

〈
Ψ′i
∣∣U †PSU

∣∣Ψi

〉
(29)

Let
gi := 〈Ψ′i|U †PSU |Ψ′i〉

be the probability that the algorithm B returns T with S ∩ T 6= ∅ when measured at
the i-th query.

We calculate

ri+1 − ri
(27)
= −4<〈Ψ′i+1|Ψi+1〉+ ‖|Ψi+1〉‖2 + 4<〈Ψ′i|Ψi〉 − ‖|Ψi〉‖2

(28),(29)
= 4<〈Ψ′i|U †PSU |Ψi〉 − 〈Ψi|U †PSU |Ψi〉
= 4〈Ψ′i|U †PSU |Ψ′i〉 − 〈2Ψ′i −Ψ|U †PSU |2Ψ′i −Ψi〉︸ ︷︷ ︸

≥0

≤ 4〈Ψ′i|U †PSU |Ψ′i〉 = 4gi+1

Since r0 = 0, by induction we have

Pr[Find : AO
SC
S (z)] = pd ≤ rd ≤ 4

d∑
i=1

gi = 4d · Pr
[
S ∩ T 6= ∅ : T ← B(z)

]
as claimed. �

20

Theorem 2 (Search in semi-classical oracle – restated) Let A be any quantum
oracle algorithm making at most q queries to a semi-classical oracle with domain X. Let
S ⊆ X and z ∈ {0, 1}∗. (S, z may have arbitrary joint distribution.)

Let B be an algorithm that on input z chooses i
$← {1, . . . , d}; runs AO

SC
∅ (z) until (just

before) the i-th query; then measures all query input registers in the computational basis
and outputs the set T of measurement outcomes.

Then
Pr[Find : AO

SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)] (8)

Proof. Immediate from Lemma 7 by using the fact that A can always be transformed
into a unitary oracle algorithm, and by averaging. �

D Proof of Theorem 3

In the following, let G,H : X → Y , S ⊆ X, z ∈ {0, 1}∗.

Lemma 8 (One-way to hiding, pure states) Fix G,H, S, z satisfying ∀x /∈
S. G(x) = H(x). (G,H, S, z are not randomized in this lemma.) Let AH(z) be a unitary
quantum oracle algorithm with query depth d. Let QA denote the register containing all
of A’s state.

Let B be an oracle algorithm that on input z does the following: pick i
$← {1, . . . , d},

run AH(z) until (just before) the i-th query, measure all query input registers in the
computational basis, output the set T of measurement outcomes.

Let |Ψleft〉 be the final state of A after running AH(z). And let |Ψright〉 be the final state
of A after running AG(z).

Let

Pguess := Pr[S ∩ T 6= ∅ : T ← BH(z)]

Then
∥∥|Ψleft〉 − |Ψright〉

∥∥ ≤ 2d
√
Pguess.

Proof. The state of A is composed of three quantum systems A,Q,R where Q,R are the
query and the response register for oracle queries. (That is, Q consists of a number of
registers Q1, . . . , Qn where r is the maximum number of queries performed in parallel, and
R consists of corresponding registers R1, . . . , Rn.) Then an execution of AH(z) leads to
the final state (UOH)q|Ψ0〉 where |Ψ0〉 is an initial state that depends on z (but not on G,
H, or S), OH : |a, q1, . . . , qn, r1, . . . , rn〉 7→ |a, q1, . . . , qn, r1 ⊕H(q1), . . . , rn ⊕H(qn)〉 is
an oracle query, and U is A’s state transition operation. (And analogously for AG.)

21

We define |Ψi
H〉 := (UOH)i|Ψ0〉 and similarly |Ψi

G〉. Then |Ψleft〉 = |Ψd
H〉 and |Ψright〉 =

|Ψd
G〉.

And in our notation, we can describe B as follows: BH(x) picks i
$← {1, . . . , d} and

y
$← Y , measures the quantum system Q of the state |Ψi−1

H 〉 (this gives a list T of inputs),
and outputs the result T . Thus

Pguess = 1
q

∥∥PS |Ψi−1
H 〉

∥∥2
=

q∑
i=1

1
qBi with Bi :=

∥∥PS |Ψi−1
H 〉

∥∥2
. (30)

Here PS is the orthogonal projector projecting Q onto states |T 〉 with S∩T 6= ∅, formally
PS :=

∑
T s.t.S∩T 6=∅|T 〉〈T |. (I.e., ‖PS |Ψi−1

H 〉‖2 is the probability of measuring T with

S ∩ T 6= ∅ in register Q given the state |Ψi−1
H 〉.)

Let Di :=
∥∥|Ψi

H〉 − |Ψi
G〉
∥∥2

. We have D0 =
∥∥|Ψ0〉 − |Ψ0〉

∥∥2
= 0, and for i ≥ 1 we

have:

Di =
∥∥UOH |Ψi−1

H 〉 − UOG|Ψi−1
G 〉

∥∥2

(∗)
=
∥∥(OH |Ψi−1

H 〉 −OG|Ψi−1
H 〉) + (OG|Ψi−1

H 〉 −OG|Ψi−1
G 〉)

∥∥2

(∗∗)
≤
∥∥(OH −OG)|Ψi−1

H 〉
∥∥2

+
∥∥OG(|Ψi−1

H 〉 − |Ψ
i−1
G 〉)

∥∥2

+ 2
∥∥(OH −OG)|Ψi−1

H 〉
∥∥ · ∥∥OG(|Ψi−1

H 〉 − |Ψ
i−1
G 〉)

∥∥
(∗∗∗)
=
∥∥(OH −OG)PS |Ψi−1

H 〉
∥∥2

+
∥∥|Ψi−1

H 〉 − |Ψ
i−1
G 〉

∥∥2

+ 2
∥∥(OH −OG)PS |Ψi−1

H 〉
∥∥ · ∥∥|Ψi−1

H 〉 − |Ψ
i−1
G 〉

∥∥
(∗∗∗∗)

≤ 4
∥∥PS |Ψi−1

H 〉
∥∥2︸ ︷︷ ︸

=Bi

+
∥∥|Ψi−1

H 〉 − |Ψ
i−1
G 〉

∥∥2︸ ︷︷ ︸
=Di−1

+ 4
∥∥PS |Ψi−1

H 〉
∥∥︸ ︷︷ ︸

=
√
Bi

·
∥∥|Ψi−1

H 〉 − |Ψ
i−1
G 〉

∥∥︸ ︷︷ ︸
=
√
Di

= 4Bi +Di−1 + 4
√
BiDi−1 = (

√
Di−1 + 2

√
Bi)

2. (31)

Here (∗) uses that U is unitary. And (∗∗) uses the inequality ‖a+ b‖2 ≤ ‖a‖2 + ‖b‖2 +
2‖a‖ · ‖b‖. And (∗∗∗) uses that (OH −OG)PS = OH −Og since G = H outside of S (this
can be verified by checking on all basis states |a, q1, . . . , r1, . . .〉), and that OG is unitary.
And (∗∗∗∗) follows since OH −OG has operator norm ≤ 2.

From (31), we get
√
Di ≤

√
Di−1 + 2

√
Bi. This implies (with D0 = 0) that

√
Dd ≤ 2

d∑
i=1

√
Bi = 2d

d∑
i=1

1
d

√
Bi

(∗)
≤ 2d

√√√√ d∑
i=1

1
dBi

(30)
= 2d

√
Pguess

where (∗) follows from Jensen’s inequality. By definition of Dq, this shows the lemma.
�

22

Lemma 9 (One-way to hiding, mixed states) Let G,H, S, z be random satisfying
∀x /∈ S. G(x) = H(x). (With some joint distribution.)

Let A be a quantum oracle algorithm with query depth q (not necessarily unitary). Let B
and Pguess be as in Theorem 3.

Let ρleft be the final state of AH(z) and let ρright be the final state of AG(z)

Then F (ρleft, ρright) ≥ 1− 2d2Pguess and B(ρleft, ρright) ≤ 2d
√
Pguess.

Proof. Without loss of generality, we can assume that A is unitary during the execution,
and applies a quantum operation E to its state in the last step. (Note that transforming an
adversary A into a unitary adversary A′ may change the internal state during the execution
because additional auxiliary qubits are used to simulate measurements. However, this
does not affect the probability Pguess because B does not measure those auxiliary qubits
of A′.)

For fixed G,H, S, z, let |ΨHSz
left 〉, |ΨGSz

right〉, PHSz
guess refer to the values |Ψleft〉, |Ψright〉, Pguess

from Lemma 8 for those fixed G,H, S, z.

Let ρ̂left and ρ̂right refer to the state of A before applying E in the games defining ρ̂left

and ρ̂right, respectively.

Then

ρ̂left = Exp
GHSz

[
|ΨHSz

left 〉〈ΨHSz
left |

]
and

ρ̂right = Exp
GHSz

[
|ΨGSz

right〉〈ΨGSz
right|

]
.

Thus we have

F (ρleft, ρright) = F (E(ρ̂left), E(ρ̂right))
(∗)
≥ F (ρ̂left, ρ̂right)

= F
(

Exp
HGSz

[|ΨHSz
left 〉〈ΨHSz

left |], Exp
HGSz

[|ΨGSz
right〉〈ΨGSz

right|]
)

(∗∗)
≥ Exp

HGSz
[F
(
|ΨHSz

left 〉〈ΨHSz
left |, |ΨGSz

right〉〈ΨGSz
right|

)
]

Lemma 3

≥ Exp
HGSz

[
1− 1

2

∥∥|ΨHSz
left 〉 − |ΨGSz

right〉
∥∥2]

Lemma 8

≥ Exp
HGSz

[
1− 1

2(4dPHSz
guess)

] (∗∗∗)
= 1− 2d2Pguess.

Here (∗) follows from the monotonicity of the fidelity [NC00, Thm. 9.6], and (∗∗)
follows from the joint concavity of the fidelity [NC00, (9.95)]. And (∗∗∗) follows since
Pguess = ExpHGSz

[
PHSz

guess

]
.

23

The Bures distance B is defined as B(ρ, τ)2 = 2(1− F (ρ, τ)). Thus

B(ρleft, ρright)
2 = 2(1− F (ρleft, ρright)) ≤ 2(1− (1− 2d2Pguess)) = 4d2Pguess,

hence B(ρleft, ρright) ≤ 2d
√
Pguess, as claimed. �

Theorem 3 (One-way to hiding, probabilities – restated) Let S ⊆ X be random.
Let G,H : X → Y be random functions satisfying ∀x /∈ S.G(x) = H(x). Let z be a
random bitstring. (S,G,H, z may have arbitrary joint distribution.)

Let A be quantum oracle algorithm with query depth d (not necessarily unitary).

Let BH be an oracle algorithm that on input z does the following: pick i
$← {1, . . . , d},

run AH(z) until (just before) the i-th query, measure all query input registers in the
computational basis, output the set T of measurement outcomes.

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)]

Pguess := Pr[S ∩ T 6= ∅ : T ← BH(z)]

Then

|Pleft − Pright| ≤ 2d
√
Pguess and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2d
√
Pguess

The same result holds with BG instead of BH in the definition of Pguess.

Proof. The output bit b of A is the result of a measurement M applied to its final state.
Thus, with ρA,1, ρA,2 as in Lemma 9, Pleft, Pright is the probability that the measurement
M returns 1 when measuring ρleft, ρright, respectively. By Lemma 4,∣∣Pleft − Pright

∣∣ ≤ B(ρleft, ρright) and
∣∣∣√Pleft −

√
Pright

∣∣∣ ≤ B(ρleft, ρright)

By Lemma 9, B(ρleft, ρright) ≤ 2d
√
PB. The corollary follows. �

E Optimality of Corollary 1

Lemma 10 If S = {x} where x
$← {1, . . . , N}, then there is a q-query algorithm AO

SC
S

such that

Pr[Find : AO
SC
S ()] ≥ 4q − 3

N
− 8q(q − 1)

N2

Proof. The algorithm is as follows:

24

• Make the first query with amplitude 1/
√
N in all positions.

• Between queries, transform the state by the unitary U := 2E/N − I where E
is the matrix containing 1 everywhere. That U is unitary follows since U †U =
4E2/N2 − 4E/N + I = I using E2 = NE.

One may calculate by induction that the final non-normalized state has amplitude(
1− 2

N

)q−1

· 1√
N

in all positions except for the xth one (where the amplitude is 0), so its squared norm
is

1− Pr[Find] =

(
1− 2

N

)2q−2

· 1

N
· (N − 1) =

(
1− 2

N

)2q−2

·
(

1− 1

N

)
As a function of 1/N , this expression’s derivatives alternate on [0, 1/2], so it is below its
second-order Taylor expansion:

1− Pr[Find] ≤ 1− 4q − 3

N
+

8q(q − 1)

N2

This completes the proof. �

25

Symbol index

OSC
I Semi-classical oracle for set I

Find Semi-classical OSC
S returns 1

∆(X,Y) Statistical distance between distributions/random vari-
ables X and Y

flipi(l) Flips i-th bit of l

F (ρ1, ρ2) Fidelity between ρ1 and ρ2 12

TD(ρ1, ρ2) Trace distance between ρ1 and ρ2. 12

tr ρ Trace of ρ

B(ρ1, ρ2) Bures distance between ρ1 and ρ2 12

|Ψ〉 Refers to a quantum state (or, for x ∈ M , |x〉 refers
to a basis vector of CM)

trAρ Partial trace of ρ, removing register A

〈Ψ| Adjoint of |Ψ〉, i.e., 〈Ψ|†

C Complex numbers

E A quantum operation (superoperator)

D A distribution

x
$←M x picked uniformly from the set M

H \ I Oracle H, punctured at I

|x| Absolute value of x / cardinality of set x

x← A x assigned output of algorithm A / picked according
to distribution A

Guess Query to fully-quantum oracle is in S

‖x‖ Norm of x

Expz[y] Expectation of y, taken over the randomness of z

26

	Introduction
	Preliminaries
	Semi-classical oracles
	Regular O2H, revisited

	Examples how to use the O2H lemmas
	Hardness of searching in a sparse random function
	Hardness of inverting a random oracle with leakage

	Acknowledgements
	Appendix
	Auxiliary lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Optimality of Corollary 1

