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Abstract

Today, Internet traffic is encrypted only when deemed

necessary. Yet modern CPUs could feasibly encrypt most

traffic. Moreover, the cost of doing so will only drop

over time. Tcpcrypt is a TCP extension designed to make

end-to-end encryption of TCP traffic the default, not the

exception. To facilitate adoption tcpcrypt provides back-

wards compatibility with legacy TCP stacks and middle-

boxes. Because it is implemented in the transport layer,

it protects legacy applications. However, it also provides

a hook for integration with application-layer authentica-

tion, largely obviating the need for applications to en-

crypt their own network traffic and minimizing the need

for duplication of functionality. Finally, tcpcrypt mini-

mizes the cost of key negotiation on servers; a server us-

ing tcpcrypt can accept connections at 36 times the rate

achieved using SSL.

1 Introduction

Why is the vast majority of traffic on the Internet not en-

crypted end-to-end? The potential benefits to end-users

are obvious—improved privacy, reduced risk of sensitive

information leaking, and greatly reduced ability by op-

pressive regimes or rogue ISPs to monitor all traffic with-

out being detected. In spite of this, end-to-end encryption

is generally used only when deemed necessary, a small

fraction of when it would be feasible.

Possible reasons for not encrypting traffic1 include:

• Users don’t care.

• Configuration is complicated and the payoff small

(especially when connecting to unknown sites).

• Application writers have no motivation.

1Conspiracy theorists might suggest other reasons, but we won’t

discuss those here.

• Encryption (and key bootstrap) are too expensive to

perform for all but critical traffic.

• The standard protocol solutions are a poor match for

the problem.

We believe that each of these points either is not true,

or can be directly addressed with well-established tech-

niques. For instance, where users actually have con-

trol, they demonstrate that they do care about encryp-

tion. Four years ago only around half of WiFi basesta-

tions used any form of encryption [3]. Today it is rare to

find an open basestation, other than ones which charge

for Internet access.

It is clear, though, that application writers have lit-

tle motivation: encryption rarely makes a difference to

whether an application succeeds. Getting it right is diffi-

cult and time consuming, doesn’t help time to market,

and developers are hard-pressed to make the business

case. For server operators, too, the process can be te-

dious. One reason people don’t use SSL is that X.509

certificates are a mild pain both for the server administra-

tor and, if the server administrator didn’t buy a certificate

from a well-known root CA, for users.

Even more important is the performance question.

SSL is by far the most commonly deployed crypto-

graphic solution, and it is expensive to deploy on servers.

Where there is a need, such as for bank login or credit

card payments, SSL is ubiquitous, but it is rarely used

outside of web pages that are especially sensitive. The

definition of “sensitive” has started to change, though;

Google recently enabled SSL on all Gmail connec-

tions [25], ostensibly as a response to eavesdropping

in China. In part this is possible today because cryp-

tographic hardware has become comparatively inexpen-

sive. This trend is set to continue; the most recent gen-

eration of Intel CPUs incorporate AES acceleration in-

structions [8], with the potential to significantly reduce

the cost of software symmetric-key encryption.

Although symmetric-key encryption is unlikely to be



a problem, the conventional wisdom is still that it is too

expensive to use public-key cryptography to bootstrap

a session key for all network connections. Indeed our

measurements show that a fully loaded eight-core (2 x

Quad-core Xeon X5355) server can only establish 754

uncached SSL connections per second. In fact, this lim-

itation is due to the way SSL uses public key algorithms

rather than anything fundamental. We will show that

much better server performance is possible with the right

protocol design, in part by pushing costs to the client,

which does not need to handle high connection rates.

Finally, there is the question of whether current en-

cryption protocols are a sufficiently good match for ap-

plications that do not currently use encryption. We be-

lieve they are not, for reasons we shall highlight through-

out the paper. However, we will describe a subtly differ-

ent protocol architecture that we believe is a much better

fit to the majority of applications. This is not rocket sci-

ence; it may even be considered obvious. But we believe

it makes a huge difference to the deployability of encryp-

tion and consequently of authentication in the real world.

1.1 Getting the Architecture Right

All the commonly deployed network encryption mecha-

nisms incorporate authentication into the protocol, even

if, like WPA, it is as simple as requiring out-of-band

password exchange. Indeed this is the obvious way to

engineer things; without authentication, it is not possible

to determine if your encrypted channel is with the desired

party or with a man-in-the-middle. However, we believe

that this is fundamentally the wrong design choice.

Encryption of a network connection is a general pur-

pose primitive; regardless of the application, the goal

is to prevent eavesdroppers from learning the contents

of communications. MACing of packets in a network

connection is also a general purpose primitive; no ap-

plication wants to accept forged or maliciously modi-

fied packets. Authentication, however, is not general

purpose. The mechanism used for authentication and

the information needed to perform that authentication

are application-specific. In practice, protocols blur this

distinction between general purpose encryption/integrity

and special purpose authentication. This has two conse-

quences:

• It tends to encourage inappropriate authentication

mechanisms. For example, using SSL to connect to

a bank, then simply handing the user’s password to

the bank, when it is known that people commonly

re-use passwords across sites.

• It makes it hard to integrate mechanisms low

enough in the protocol stack to really be ubiqui-

tous. For example, adding SSL to an application re-

quires modifying the source code and, potentially,

extending its application-layer protocol in a back-

wards compatible way.

To enable encryption and integrity checking in a gen-

eral way for all legacy TCP applications2, this function-

ality must be below the application layer. However it

cannot be done cleanly any lower than the transport layer

because this is the lowest place in the stack that has any

concept of a conversation. There is also the practical

consideration that encrypting below the transport layer

will prevent NAT traversal. The clear implication is that

embedding encryption and integrity protection into TCP

would provide the right general-purpose mechanism; in

fact, because TCP includes a session establishment hand-

shake, this is simple to do in a backward-compatible way.

To establish session keys in a general way, TCP-level

encryption should be divorced from higher level authen-

tication mechanisms. This suggests the use of ephemeral

public keys to establish session keys. Such a mechanism,

enabled by default, would provide protection against pas-

sive eavesdroppers for all TCP sessions, even for legacy

applications. We are not the first to suggest such “op-

portunistic” encryption. Our goal, though, is to provide

not just encryption and integrity protection, but also a

firm foundation upon which higher-level authentication

mechanisms can build. With the right architecture, a di-

verse set of authentication mechanisms can be devised,

each suitable to its own application.

The end point we hope to establish is that all TCP ses-

sions (and SCTP and DCCP, though we don’t discuss

these further here) are protected against passive eaves-

droppers, and that all applications that require authenti-

cation should, as a side effect, enjoy protection against

active man-in-the-middle attacks, all without duplica-

tion of effort. Ideally, an eavesdropper cannot tell from

watching the traffic which encrypted sessions will be au-

thenticated.

In this paper, we describe tcpcrypt, our implemen-

tation of TCP-level encryption. Although the idea is

simple, the details really matter, as we will show. We

have validated our design by building two implemen-

tations, one a Linux kernel module, the other a user-

space process using divert sockets. The latter allows

use of tcpcrypt on Linux, FreeBSD, and MacOS X with-

out modifying the kernel. Both implementations show

excellent performance; we will demonstrate that this is

no longer the factor preventing ubiquitous network en-

cryption. We have also implemented application-level

authentication protocols that use tcpcrypt to bootstrap

authentication. These include X.509 certificate-based

authentication, fast password-based mutual authentica-

tion, and PAKE. Our X.509-based authentication pro-

2The vast majority of Internet applications use TCP.



vides security equivalent to SSL, but uses batch-signing

to run 25 times faster. Moreover, we have implemented

X.509 authentication inside the OpenSSL library in a

way that preserves the same API and cleanly falls back to

vanilla SSL when appropriate. Thus, to take advantage

of tcpcrypt in SSL-enabled applications requires only a

library update.

2 Cryptographic design

The goal of tcpcrypt is to enable the best communica-

tions security possible under a wide range of circum-

stances. In the absence of any authentication, when users

browse unknown servers, they should enjoy protection

from passive eavesdropping. Though active network at-

tackers may still intercept and monitor communications

(there are also legitimate reasons for this, such as trans-

parent proxies and intrusion detection systems), it should

be possible to detect such behavior both during commu-

nications and afterward. Thus, tcpcrypt should virtu-

ally eliminate the possibility of widespread eavesdrop-

ping unbeknownst to a user population.

When an application performs any kind of endpoint

authentication, it must be able to leverage tcpcrypt to

obtain stronger protection of session data. For instance,

given a server-side X.509 certificate, the client should be

assured of the confidentiality of the data it transmits and

the integrity of the data it receives. Any time a user types

a password, it should be possible to ensure the confiden-

tiality and integrity of all data sent in either direction.

In all cases, when tcpcrypt achieves confidentiality, it

should also provide forward secrecy. As a final goal,

tcpcrypt should affect performance as little as possible.

Thus, the protocol is designed to minimize the number of

cryptographic operations and extra round trips, subject to

the limitations of needing to interoperate with legacy end

hosts and middleboxes.

2.1 Key exchange protocol

Key exchange is the biggest challenge to tcpcrypt’s per-

formance. Forward secrecy requires a pair of hosts to ex-

change a secret using an ephemeral public key or Diffie-

Hellman key exchange the first time they communicate.

These operations are far more costly than establishing a

TCP connection, but the cost can be asymmetric. For

example, a single core of the server in Section 6 can per-

form 12,243 encryptions/sec with a 2,048-bit RSA-3 key,

but only 97 decryptions/sec.

Servers typically communicate with more peers than

clients do, so it makes sense for clients to shoulder most

of the cost of key exchange. Thus, by default, tcpcrypt

performs the expensive decryption at the client (though

for generality, servers may opt to reverse the protocol).

HELLO - syn

PKCONF - syn ack

INIT1 - ack

INIT2 - ack

encryption start

NEXTK1 - syn

NEXTK2 - syn ack

encryption start

ack

Figure 1: Tcpcrypt connection establishment with key

exchange (left) and session caching (right).

Subsequent connections between the same two hosts can

use session caching to avoid any public key operations

at all, thereby ensuring that, for instance, an active-mode

FTP server need not perform RSA decryptions.

The initial key exchange works as follows. Each ma-

chine C has an ephemeral public key, KC . When C con-

nects to a server S for the first time, C chooses a random

nonce, NC ; S chooses a random secret, NS ; the two ex-

change the following messages, also shown in Figure 1:

C → S : HELLO

S → C : PKCONF, pub-cipher-list, [cookie]

C → S : INIT1, sym-cipher-list, NC , KC , [cookie]

S → C : INIT2, sym-cipher, ENCRYPT (KC , NS)

Here pub- and sym-cipher-list are used to negotiate cryp-

tographic algorithms. The optional cookie is a SYN-

cookie that must be echoed by the client to make it harder

for packets from forged source addresses to trigger any

public-key cryptographic operations in the server. This

trade-off is at the discretion of the server; if TCP’s 32-

bit initial sequence number (ISN) provides enough pro-

tection against forged packets, the option space may be

deemed better used for other purposes.

KC specifies the public key cipher and a pseudo-

random function, used below. Quantities from this pro-

tocol are then combined into a series of “session secrets”

with a Collision-resistant Pseudo-random Function, CPF

(currently HMAC):

ss[0]← CPF
(

NS ,
{

KC , NC ,

cipher-lists, sym-cipher
})

ss[i]← CPF (ss[i− 1], TAG NEXT KEY)

If ISNC,i and ISNS,i are TCP’s initial sequence numbers

on the client and server for session i, the two sides then

compute a master secret as follows:

mk[i]← CPF (ss[i], {TAG KEY, ISNC,i, ISNS,i}) .

Finally, the two sides use CPF(mk[i], x) on various con-

stants x to generate encryption and MAC keys (a com-

mon technique). From this point on, all further segments

in the TCP connection are cryptographically protected.

Note that this full key exchange is only needed for the

first connection between two hosts. Hosts can cache ss[i]



for the largest i used till that point. Subsequent connec-

tions between the same two hosts can use this to derive

new symmetric keys, thereby avoiding any further public

key cryptography and the latency of the full handshake.

2.2 Authentication Hooks

To gain stronger benefits from tcpcrypt, applications

must be able to make statements about a connection—

e.g., “All data you read from this connection is sent by

user U’s browser,” or “Any data you write to this connec-

tion can be decrypted only by server Y.” To make such

statements, one must specify what is meant by “this con-

nection” in a way that cannot be interpreted out of con-

text. Tcpcrypt accomplishes this through session IDs. A

new getsockopt call returns a session ID, sid[i], computed

from the connection’s session secret ss[i] as follows:

sid[i]← CPF (ss[i], TAG SESSION ID)

If both ends of a tcpcrypt connection see the same

session ID, then with overwhelming probability an at-

tacker cannot eavesdrop on or undetectably tamper with

traffic—i.e., there has not been a man-in-the-middle at-

tack. Two properties facilitate verification of session IDs.

First, they need not be kept secret. Second, with over-

whelming probability they are unique over all time, even

if one end of a connection is malicious. Hence, a crypto-

graphically endorsed session ID can only ever authenti-

cate a single tcpcrypt connection. In Section 4 we discuss

different ways applications can leverage session IDs.

2.3 Proof of Security

To increase confidence in tcpcrypt, we provide a semi-

formal proof of its security. We assume that the adver-

sary has complete control over the network, and nearly

complete control over the users. It can choose when and

to whom users attempt to connect, and what data they

send, and can delay, drop, modify, and forge packets ar-

bitrarily. Furthermore, since the session IDs sid[i] are

not secret, we assume that the adversary knows them.

We do not model malicious machines here, as the ad-

versary can emulate as many of these as it wants. We

do not model compromised machines because of space

constraints. When we write “client” or “server” in this

discussion, we mean a legitimate client or server.

We guarantee the security of tcpcrypt connections only

when the session IDs match. In this case, the guarantee

is fairly strong:

Definition 2.1 (Security guarantees). Suppose that users

U1 and U2 complete the tcpcrypt protocol on sockets S1

and S2, and arrive at sessions with the same session ID.

Then the following guarantees hold:

• The adversary has not tampered with U1 and U2’s

cipher suite choices. Assuming they have chosen a

secure cipher suite:

• Any packet sent by U1 on socket S1 (or by U2 on S2)

gives no information to the adversary other than its

length and timing.

• If, after TCP reassembly, U2 receives a sequence of

segments p1, . . . , pn, then U1 sent those segments

in that order (and no segments before them), and

similarly for segments received by U1.

We will show that, unless the adversary has broken

the underlying cryptographic primitives, its probability

of violating this guarantee is very small. Specifically:

Theorem 2.1 (Security of tcpcrypt). Suppose that an ad-

versary A can violate the tcpcrypt security guarantee

with probability ǫ. Suppose that it uses m machines in its

attack, and begins at most c connections in total. Then

there are five simple modifications ofA, running in about

the same time asA, which aim to do the following things:

• Find a collision in CPF.

• Break the pseudorandomness of CPF.

• Break the public-key cipher.

• Break the MAC.

• Break the symmetric cipher.

The sum of their probabilities of success is at least

ǫ− 3c2/2k+1

where k ≈ 256 is the minimum of the min-entropy of a

public key, or the length in bits of NS or NC .

Proof. Define NEXT(k) := CPF(k, TAG NEXT KEY).
Suppose that U1 and U2 have the same sid, and that for

U1 it is sid[i] for some i, where:

ss[0] = CPF (NS , {KC , NC , cipher-lists, sym-cipher})

sid[i] = CPF
(

NEXT
i(ss[0]), TAG SESSION ID

)

Because everything passed to CPF has a unique parse, the

sid must have been computed by U2 in the same way—

and in particular with the same values of NS , NC ,KC ,

the same cipher suite lists and the same cipher choice—

or else the computation contains a hash collision. What is

more, the NS , NC , and KC values are chosen at random,

and so with probability at least 1 − 3c2/2k+1 they are

unique. For the rest of the proof, assume that this is the

case.

Now, each of U1 and U2 is either a client or a server.

Because their KC , NC and NS values match, they can’t

both be clients or both be servers; without loss of gener-

ality, say U1 is the client (which generated KC and NC),

and U2 is the server (which generated NS).



We will next show that this NS remains secret. We

first replace ENCRYPT(KC , NS) with an encryption of

zero (but the client still decrypts it to NS). If the ad-

versary notices this, then it has broken the public-key

cipher. After this change, NS is only used as a key to

CPF. Furthermore, CPF is evaluated on NS only once by

U2 and once by U1, with a nonce NC in the other argu-

ment; if the adversary replays ENCRYPT(KC , NS), then

CPF(NS , ·) will be called with different nonces. Because

CPF is pseudorandom, we can replace its outputs ss[0]
with independent random values; if the adversary notices

this, then it has broken CPF. Continuing in this manner,

we can replace ss[i], mk[i], sid[i] and the encryption and

MAC keys with random values, and the adversary will

not notice this, either.

If the initial sequence numbers do not match, the client

and server will arrive at different (secret, random) MAC

keys, and so as long as the MAC is unforgeable, nei-

ther will accept any packets at all. Otherwise since every

packet is MACed with associated data that includes the

64-bit extended sequence number, they must be received

unmodified and in order. Finally, if the symmetric cipher

is secure against chosen-plaintext attacks, the only infor-

mation that the adversary can learn about a segment is its

length and timing. This completes the proof.

3 Integration with TCP

Integrating tcpcrypt into TCP posed a number of chal-

lenges ranging from the basic to the baroque. First, we

have to extend TCP in a backwards compatible way. If a

tcpcrypt client connects to a tcpcrypt server, encryption

should be enabled by default, but if it is a legacy server,

the session must fall back to regular TCP behavior.

The same issue applies with middleboxes. Tcpcrypt

must work through NATs, so it cannot protect the TCP

ports. Tcpcrypt must also work correctly when faced

with firewalls that do not understand the tcpcrypt exten-

sions. For an example of how broken firewalls have in-

hibited innovation, we need look no further than Explicit

Congestion Notification (ECN). ECN should be harm-

less to deploy—it uses TCP options in the handshake to

negotiate the capability, then uses two bits from the old

IP Type-of-Service field to indicate congestion, and fi-

nally signals this in feedback using a previously reserved

TCP flag. ECN is built into all the main modern op-

erating systems, but is disabled by default. This is be-

cause a small number of home gateway/firewall boxes

crash when they see the reserved TCP flag set to one.

This has taught us to avoid protocol changes to TCP

that are not carried in TCP options. Firewalls might drop

unknown options, or might completely drop packets with

unknown extensions; a TCP extension needs to be robust

to either and correctly fall back to regular TCP behavior.

Finally we risk being hoisted by our own petard. Traf-

fic normalizers [9], as implemented in pf [10] and some

other firewalls, enforce conservative rules on protocol

behavior and consistency. This limits design flexibility.3

3.1 Initial TCP Handshake

Ideally the key exchange for tcpcrypt would be per-

formed in TCP’s three-way connection setup handshake,

as this would add no additional network latency to estab-

lishing encrypted sessions. We can’t quite achieve this

for the first connection between two hosts—rather, we

require adding information to the first four packets of the

session, as shown in Figure 1. To be backwards compat-

ible with regular TCP, any data we can add to the SYN

and SYN/ACK packets must fit within the TCP options

field, which is limited to 40 bytes, some of which are

required to negotiate other TCP functionality. This re-

quires HELLO and PKCONF to be small. HELLO requests

encryption; PKCONF acknowledges the use of encryption

and states the list of public key ciphers that can be used

for the subsequent key exchange. Receipt of a SYN/ACK

without PKCONF causes fallback to vanilla TCP.

The INIT1 message cannot be small, as it must contain

the client’s public key. The public key cannot fit into an

option, so instead we re-purpose the data portion of one

packet in each direction to carry it. The data payload is

only co-opted in this way after tcpcrypt negotiation has

succeeded, which ensures that key data never acciden-

tally gets passed to applications by legacy TCP stacks.

INIT2 is sent in response to INIT1 in the same way.

We use a single TCP “CRYPT” option; HELLO,

PKCONF, INIT1, and INIT2 are suboptions of CRYPT.

This reduces the use of scarce TCP option numbers, but

more importantly it ensures that if a middlebox is go-

ing to remove one option, it should remove them all.

If either host receives a TCP segment without a CRYPT

option during session establishment, tcpcrypt falls back

to vanilla TCP. This ensures interoperability with non-

tcpcrypt-aware stacks and middleboxes that strip out un-

known options. Applications can test whether tcpcrypt

is used by calling getsockopt to request the session ID,

which returns an error on downgraded connections.

Tcpcrypt also incorporates a re-keying mechanism, al-

lowing session keys to evolve later in the connection to

avoid using a single set of session keys for too long.

3.2 Session Caching

Applications such as the Web often establish more than

one TCP connection between the same pair of hosts in

rapid succession. When they do this, the amount of data

3One of us sometimes regrets writing the Normalizer paper.



transferred per connection can be quite small—often a

few KBytes. If we have to pay the full cost of running

the public key operations to establish these short-lived

sessions, tcpcrypt can become a bottleneck. Fortunately

we can use the same solution as SSL—cache the cryp-

tographic state from one TCP connection and use it to

bootstrap subsequent connections.

To do this we use two more CRYPT suboptions,

NEXTK1 and NEXTK2, also shown in Figure 1. We can-

not depend on the IP address in the SYN packet to locate

the correct state because the client may have moved, or a

different client may have acquired the DHCP lease used

by a previous client. Thus NEXTK1 contains nine bytes

of the next session ID, sid[i + 1]. This allows the server

to verify that it has the correct cached state before using

it to enable encryption. It also makes it hard for DoS at-

tackers to flush the server’s cache by spoofing packets.

In the event of a cache miss, the server returns PKCONF

and the protocol falls back to ordinary key exchange.

3.3 Protocol and Data Integrity

Unlike SSL, one of tcpcrypt’s goals is to provide in-

tegrity protection for the TCP session itself, defending

against attacks that might reset the connection [5], insert

data into it, or otherwise interfere with its progress [14].

To do this, tcpcrypt adds a MAC option to every TCP

packet after the INIT1/INIT2 exchange. Packets received

with an incorrect or missing MAC are silently dropped.

This MAC option authenticates a segment’s payload

as well as a pseudo-header comprising most of the TCP

header fields and options, as shown in Figure 2. We need

to be pragmatic about which fields are covered by the

pseudo-header. The TCP ports cannot be covered, as

NATs re-write them. The MAC option is zeroed out in

the pseudo-header, since it cannot authenticate itself.

Replay attacks could present a potential issue when

TCP’s sequence space wraps. Instead of sequence and

acknowledgment numbers, the pseudo-header contains

implicitly extended 64-bit values that cannot wrap. The

acknowledgment number is fed separately into the MAC

value, with a technique from [15], so as to improve the

efficiency of retransmissions (which often acknowledge

a different packet from the original).

Extended sequence numbers also solve the problem

that PAWS [13] was intended to solve, so an encrypted

TCP session might omit the timestamp option. This frees

up eight bytes of option space; if we use a 64-bit MAC

then tcpcrypt will use no more option space than most

modern TCP implementations. This is particularly rele-

vant for high performance, because when TCP’s window

is large it benefits from the robustness provided by Se-

lective Acknowledgments (SACK) [19], and we do not

wish to reduce their effectiveness.

src port dst port
seq no. (64-bit seq)

ack no. (64-bit ack)

d.off. flags window checksum urg. ptr.

options (e.g., SACK) MAC option

data (encrypted) IP length

Figure 2: A data packet using tcpcrypt. Dashed quanti-

ties are not transmitted by TCP though included in the

MAC, along with shaded fields.

More subtly, we need to be careful about middleboxes

that modify packets. If an implementation does send the

timestamp option, tcpcrypt will normalize it to zero in

the pseudoheader, as OpenBSD’s pf [10] modulates its

value. All the other options that are commonly modified

occur only in the SYN or SYN-ACK, so do not present

a problem. Tcpcrypt does provide a secure timestamp-

like suboption to CRYPT called SYNC. SYNC is covered

by the MAC, but fuzzes the clock to avoid the reasons

for which pf needs to modulate the timestamp’s value.

Moreover, the SYNC option is only required for keepalive

packets and during re-keying when the connection is oth-

erwise idle. In both cases there is no need for SACK

blocks, so the option space is less precious.

Packets with the TCP RST bit set present the final

challenge. For full protection, after session establish-

ment we would prefer to drop RST packets that do not

contain a valid MAC option. However, RST is TCP’s

mechanism for informing one side of a connection that

the other side no longer has any state for the connec-

tion. Under such circumstances it is impossible for a

legitimate host to generate a RST packet with the MAC

option. Tcpcrypt’s default behavior is to reset the con-

nection when receiving a RST with no MAC, so long

as it passes the OS’s sequence number validity checks.

However, some applications (notably BGP routing) have

a much stronger requirement to protect against connec-

tion resets. For these applications we support a set-

sockopt that mandates RST packets carry a valid MAC.

Such connections will take a long time to time out if one

side loses state; however, applications such as BGP and

SSH that might require such protection also typically use

application-level keepalives to detect liveness and so tear

down stale connections.

3.4 Application Awareness

Tcpcrypt serves a dual role: for legacy applications

it protects against passive eavesdroppers; for tcpcrypt-

aware applications it enables stronger protection, as we

will discuss below. However, it is important to avoid a

duplication of functionality.

Consider a tcpcrypt-aware web browser on a tcpcrypt-



capable host that wishes to make an authenticated con-

nection to a web server. The browser might prefer

tcpcrypt because of the availability of better password

authentication methods, but only if the web server also

supports it. Otherwise, it wishes to fall back to SSL.

A potential problem occurs when the client connects

to a legacy web server process running on a tcpcrypt-

capable host. Under such circumstances we do not wish

to use both unauthenticated tcpcrypt and authenticated

SSL encryption, which would be the default behavior.

Rather, the web browser wishes the tcpcrypt negotiation

in the SYN exchange to fail unless both the host and the

web server process can use the tcpcrypt-based authenti-

cation.

To get this correct fallback behavior, the HELLO option

includes a “Mandatory Application-Aware” bit. When

set, this bit indicates to the server that it must not enable

tcpcrypt encryption unless the server application has in-

formed the stack that it is tcpcrypt-aware. The process

uses a setsockopt on the listening socket to do this.

Our enhanced SSL implementation that uses this mecha-

nism is described in Section 5.3.

Tcpcrypt also includes a second “Advisory

Application-Aware” bit in both the HELLO and PKCONF

options. This is used for each side to indicate to the

other that the application is tcpcrypt-aware. This is used

when applications want to perform authentication over

tcpcrypt if the other side is also tcpcrypt-aware, but

where it is not necessary to fall back to an unencrypted

session if the other side is not tcpcrypt-aware. For

example, many websites with low security requirements

use HTTP Digest authentication. Such websites can still

use HTTP Digest authentication over tcpcrypt (though

we would not advise it), but if both the client and server

applications are tcpcrypt-aware, it would be possible

to drop in CMAC-based mutual authentication instead.

However, the client needs to know that the server can do

this before sending the HTTP request, and the “Advisory

Application-Aware” bit provides this information. It

is set via a setsockopt before calling connect and

retrieved at the other side via getsockopt after the

connection handshake completes.

4 Authentication examples

User authentication is an area in which there exist sim-

ple and well-known techniques qualitatively superior to

those in widespread use. For instance, websites typically

request passwords be sent straight to the server. As a re-

sult, we see many successful phishing attacks. Almost all

of these attacks could very easily be defeated with known

techniques, were it not for issues of backwards compat-

ibility in protocols and user interfaces. Thus, there are

strong incentives to make improvements to authentica-

tion in the web and other applications.

To realize this shift to better authentication protocols

we need innovation in user-interface design. Currently,

HTTP digest authentication, while better than plaintext

passwords, is seldom used because web developers shun

browsers’ ugly gray popup boxes. The challenge is to

allow some aesthetic control by web sites while simulta-

neously ensuring password entry is unambiguously dif-

ferentiated from web forms (or anything else accessi-

ble by JavaScript). Tcpcrypt itself obviously cannot im-

prove user interfaces; the aim is to ensure that when im-

provements do happen, they can easily be integrated with

tcpcrypt to provide security against active attackers.

The hook tcpcrypt provides to application-level au-

thentication is the session ID. This section gives a few

examples of how session IDs can be used, assuming

the ability to display certificate names and to input

passwords from a user securely. Though these exam-

ples require modifications to applications, such enhance-

ments can be deployed incrementally using tcpcrypt’s

Application-Aware bits described in the previous section.

Note that the prevalence of weak authentication makes

for some very low-hanging fruit. We do not claim these

obvious and well-known fixes as contributions. Nor do

we mean to imply that these techniques would not work

with application-layer traffic encryption were we to en-

hance SSL. Our point is merely to illustrate the general-

ity of the session ID abstraction and to help substantiate

our claim that tcpcrypt provides encryption as a general

building block suitable for a wide range of applications.

The key properties we rely on are that 1) if both ends

of a connection see the same session ID, then the ses-

sion data’s confidentiality and integrity are ensured, and

2) session IDs are unique over all time with overwhelm-

ing probability, even when one end of a connection is

malicious.

4.1 Certificate-based authentication

One common basis for server authentication is cer-

tificates, such as the X.509 certificates employed by

SSL. (This model may become even more prevalent if

DNSSEC gains widespread deployment.) In this model,

each server S has a long-lived public key, KS , certified

by a trusted authority to belong to a particular common

name and organization. The common name or organiza-

tion can then be presented to the user to inform her of

whom she is communicating with.

Certificates permit a trivial authentication protocol:

S → C : KS , Certificate, SIGN
(

K−1

S , Session ID
)

The server simply signs the session ID, thereby proving it

owns one end of the connection, ensuring confidentiality



of messages sent by the client and integrity of those sent

by the server.

The problem with the above protocol is the cost of the

SIGN function, which can be comparable to public-key

decryption. The cost for the server to compute such a

signature for every new client would be comparable to

setting up an SSL connection, which is one of the fac-

tors dissuading people from using SSL ubiquitously to-

day. While there do exist some faster signature schemes

(e.g., [7]), the certificate authorities may not be willing

to endorse non-standard algorithms.

Fortunately, there is a better approach. Heavily loaded

servers can amortize the cost of a single signature over

many sessions by signing a batch of session IDs. Session

IDs are not secret, so disclosing a batch of them to each

client is not a problem.

Once a single session has been authenticated, the same

pair of machines can use the existing connection to boot-

strap authentication of other sessions using only sym-

metric cryptography. For instance, they can exchange

a MAC key and use it to authenticate future session IDs.

4.2 Weak password authentication

Often two connection endpoints share a secret. For in-

stance, a user may remember a password, and a server

may store some secret derived from the password. To-

day, all too often passwords simply authenticate the user

to the server and not vice versa. As a basic principle,

if we deploy new authentication mechanisms, any time

a user types a password, it should mutually authenticate

the client and server to each other. There is simply no

reason ever to use a password to authenticate only one

endpoint of a communication. Even if the other end is a

server with an X.509 certificate, the certificate may have

been fraudulently obtained, or it may be for a “typo” do-

main name similar enough to the desired one that the user

doesn’t notice the error.

When a server, S, is under severe performance con-

straints, it can perform password authentication us-

ing symmetric cryptography. For instance, S may

store the secret hash value of a user’s password, h =
H(salt, realm, password); a client C can query S for

the non-secret salt, then compute h from a user-supplied

password. Section 6 benchmarks the following trivial au-

thentication protocol for such settings:

C → S : MAC (h, TAG CLIENT||Session ID)
S → C : MAC (h, TAG SERVER||Session ID)

This protocol is no more costly or hard to implement

than digest authentication [6] (in fact, possibly easier, as

it requires no randomness beyond that already reflected

in the Session ID). Yet it provides better guarantees,

namely mutual authentication of S to C as well as in-

tegrity and confidentiality of all session data. The pro-

tocol assures both C and S that the other end of the

connection knows h. Such a guarantee is different from

and complements that provided by certificates—i.e., that

a server owns a particular domain name. Domain-name

certificates offer important protection in many contexts,

but this session-ID-based protocol offers protection even

when users do not remember the correct domain name.

We note that even if an attacker hijacks DNS to

impersonate S, our protocol is resistant to phishing

for users with good passwords. The protocol can be

viewed as endorsing the session ID with h; since ses-

sion IDs are unique over time, the attacker may obtain

MAC(h, TAG CLIENT||Session ID), but this value is mean-

ingless in the context of any other connection.

Unfortunately, while the above protocol would be cat-

egorically superior to plaintext passwords and digest au-

thentication, we still do not advocate using it except for

servers on which stronger authentication would require

too much CPU time. The problem is that an attacker who

impersonates the server to obtain the first message can

then mount an offline dictionary attack on the password,

leveraging the single message exchange to guess arbitrar-

ily many passwords. Such an attack may be detectable if

the attacker cannot crack the password in time to mount

a transparent man-in-the-middle attack—but people are

used to clicking reload sometimes when web sites fail

and will not be concerned by a single connection failure.

4.3 Strong password authentication

Fortunately, as detailed in Section 6, any site that can af-

ford to use SSL today can afford to use a strong pass-

word authentication scheme with tcpcrypt. Here we

give a simple example of a Password-Authenticated Key-

Exchange (PAKE) protocol that that, while considerably

more expensive than the previous weak protocol, can

nonetheless be implemented with far less overhead than

SSL imposes today.

We use a protocol termed PAKE+

2 in [4]. The proto-

col relies on several system-wide parameter choices: a

group G of prime order q (on which the computational

Diffie Hellman problem is hard); a generator g of G; two

randomly-chosen elements of G, U and V ; two crypto-

graphic hash functions, H0 and H1, mapping strings to

elements of Zq; and finally, another hash function, H ,

onto bit strings the size of a MAC key. At the time a user

registers for an account, her client computes:

π0 = H0(password, user name, server name)
π1 = H1(password, user name, server name)
L = gπ1

The server stores π0 and L, but never sees π1. To au-

thenticate a session, the client chooses a random ele-

ment α ∈ Zq and the server chooses a random element

β ∈ Zq. The two then engage in the following protocol:



C → S : gαUπ0

S → C : gβV π0

At this point, both sides compute gαβ . They can do this

by computing either U−π0 or V −π0 and using it to re-

vert to a regular Diffie-Hellman key exchange. Then

both sides compute gπ1β . The client can do this because

it knows gβ and π1. The server can do this because it

knows: L = gπ1 and β. Finally, both sides compute:

h = H
(

π0, g
α, bβ , gαβ , gπ1β

)

Using h they complete the password authentication pro-

tocol of the previous section, but now the order of mes-

sages doesn’t matter (the client and server can each trans-

mit one of these messages before receiving the other to

reduce latency):

S → C : MAC (h, TAG SERVER||Session ID)
C → S : MAC (h, TAG CLIENT||Session ID)

While this protocol is considerably more expensive

than the one in the previous section, it has the benefit of

protecting users with weak passwords; each guess at the

password requires a separate network interaction with a

party that knows either the password or π0 and L. More-

over, the protocol is still cheaper than SSL (even com-

bined with tcpcrypt key negotiation). Therefore, we be-

lieve it is suitable for use in any application that uses both

passwords and SSL.

It is an open question whether we can design pass-

word authentication protocols that are highly efficient

at the server and offload most of the work to the

client. However, should we devise such protocols, they

can be deployed after the fact, without modification to

tcpcrypt itself. The session ID abstraction nicely sepa-

rates tcpcrypt’s confidentiality and integrity properties,

which are solved problems, from authentication, where

further innovation may be needed.

5 Implementation

To validate the protocol design and verify its perfor-

mance, we implemented tcpcrypt in the Linux kernel.

We also implemented tcpcrypt as a user-space daemon

using divert sockets; this allows tcpcrypt to be deployed

easily without requiring any kernel changes. Finally we

implemented a range of application authentication mech-

anisms over tcpcrypt.

5.1 Linux kernel implementation

Our kernel implementation of tcpcrypt consists of a

4,000-line loadable module and 70 lines added to the

core Linux 2.6.32 kernel to add the necessary hooks. For

RSA support, we ported OpenSSL v0.9.8l to the Linux

kernel. This required about 400 lines of glue code to ex-

port RSA as a Linux crypto module. We also exposed

OpenSSL’s SHA1 as we found it to perform twice as fast

as Linux’s implementation.

During the implementation, it became clear that

tcpcrypt is incompatible with TCP segmentation offload-

ing, as supported in some modern NICs. As tcpcrypt

has to copy the packet to memory to encrypt the data

and compute the MAC, segmenting it during this process

does not add significant overhead. However, a server

running so close to its performance limits that it re-

quires segmentation offloading would likely want to dis-

able tcpcrypt.

5.2 Portable userspace implementation

Our userspace tcpcrypt implementation uses divert sock-

ets to access TCP packets entering and leaving the host.

Firewall rules select the packets to be diverted, leaving

the kernel unchanged. FreeBSD’s NAT (natd) is im-

plemented this way. The main advantages of this ap-

proach are portability and ease of deployment. Our code

is 7,000 lines. We have tested it on MacOS X, FreeBSD

and Linux.

The userspace implementation is obviously slower

than the native kernel implementation, but it is ideal for

early deployment without support from OS vendors. If

tcpcrypt is successful and ships in major operating sys-

tems, it will still be a long time before older hosts are up-

graded. The userspace implementation provides a good

interim solution. It can also be run on middleboxes such

as firewalls or home gateways to protect traffic to and

from legacy local hosts against passive eavesdropping.

The userspace implementation is more complicated

than the kernel one as it must track connections, dupli-

cate much of TCP’s state machine, calculate checksums

again, and rewrite sequence and acknowledgment num-

bers since we use some bytes of the payload for INIT

messages. In SYNs the MSS is reduced to allow space

to add the MAC to subsequent packets. In addition, the

sending of application data must be delayed until the

tcpcrypt handshake completes, which we do by modulat-

ing the receive window. Finally, we implement IPC calls

to provide the equivalent of getsockopt, so the applica-

tion can extract the session ID to perform authentication.

5.3 Integrating tcpcrypt and OpenSSL

If tcpcrypt were enabled by default, then an SSL con-

nection between two tcpcrypt hosts would duplicate ef-

fort doing both tcpcrypt and SSL key exchange and en-

cryption. Tcpcrypt’s Mandatory Application-Aware bit

avoids this duplication. To verify this mechanism and to

compare the full performance of Apache running SSL-

over-tcpcrypt using batch-signing to that of vanilla SSL,

we implemented tcpcrypt support within the OpenSSL



v0.9.81e library. We did not modify OpenSSL’s API or

require applications to set specific parameters to gain the

benefits of tcpcrypt and batch-signing—our library is a

drop-in replacement for OpenSSL.

Our implementation uses the tcpcrypt setsockopt to

notify the kernel that the application supports tcpcrypt,

setting the Mandatory Application-Aware bit during the

handshake. After the TCP handshake, either the session

is encrypted and both sides support tcpcrypt-based au-

thentication, or the connection has fallen back to vanilla

TCP. The library code then queries with getsockopt to

get the session ID. If this returns an error, it falls back to

SSL’s handshake, otherwise it batch-signs the session ID

and sends it to the client.

We modified OpenSSL’s BIO layer to call the neces-

sary setsockopt for setting the application bit. The

SSL layer, i.e., SSL accept and SSL connect, then

deals with the signatures. Thus, so long as the appli-

cation uses the BIO API, no change to the application

is needed to use tcpcrypt-based authentication instead of

SSL authentication.

Things are not quite so clean if application program-

mers manually create sockets using the BSD socket APIs

instead of BIO, feeding them directly into SSL accept

and SSL connect. These sockets will not have the nec-

essary options set, and so tcpcrypt would disable itself

even though the SSL library is capable. In such cases, if

upgrading the application is not possible, then a sysctl

could be used to set the application bit on by default on

specific TCP ports.

Batch signing is implemented per SSL context. A

single worker thread (per SSL context) waits on a

semaphore for work and batch signs all session IDs it

finds on its work queue. The signer thread then wakes

up all threads corresponding to the session IDs signed.

For batch signing to work, the SSL server must be mul-

tithreaded. We note that this implementation naturally

scales depending on load: if a single client needs a sig-

nature, it is produced right away; when under load, mul-

tiple client session IDs will be batch signed to amortize

cost. Our OpenSSL patch and batch signing code total

700 lines of code.

5.4 Password based authentication

We implemented the weak password authentication

scheme in Section 4.2 as well as the strong scheme from

Section 4.3. The weak scheme uses CMAC-AES as

the MAC, and employs IBM’s CMAC patch [21] for

OpenSSL. We implemented the strong authentication

scheme ourselves (500 lines of code) using OpenSSL’s

built-in support for NIST Prime-Curve P-256.

6 Performance and compatibility

If we are to achieve our ultimate goal of encrypting al-

most all Internet traffic, then the cost of doing so must

be sufficiently low that the cost/benefit trade-off makes

sense, even when the benefits are small. What then are

the costs of running tcpcrypt? Roughly, the performance

cost breaks down as follows:

• The cost of the tcpcrypt key exchange.

• The cost of encrypting and MACing every packet

on the wire.

• The cost of authentication over tcpcrypt, for appli-

cations that choose to authenticate.

We must demonstrate that the first two are small enough

they will not significantly degrade the performance of

the vast majority of servers (clients are rarely the bottle-

neck, as they handle only a few connections per second

at most). We must also demonstrate that the third is at

least as cheap as current deployed solutions.

In addition, we must also demonstrate compatibility.

Tcpcrypt must not cause connections to fail that would

succeed without tcpcrypt.

6.1 Connection setup rate

Just how fast do servers need to accept connections in

practice? It is hard to get firm numbers. YouTube gets

1 billion hits per day [12], thus averaging about 11,500

hits per second. Facebook currently gets about 260 bil-

lion page views per month [20], or around 100,000 per

second. Of course a page may require more than one

TCP connection, but with HTTP/1.1 the number will be

fairly small. Facebook also has over 30,000 servers [24].

Not all these are front-end servers, but even so it becomes

clear that the number of connections that need to be han-

dled per second on each server is unlikely to be more

than a few thousand.

To get another perspective, we can examine what an

untuned operating system running an untuned web server

can achieve. This tells us how default configurations per-

form, and so what a typical server administrator might

expect. Our test machines are eight-core (two Intel Xeon

X5355 CPUs) running Linux 2.6.32. Each has 13 1Gb/s

NICs connected to client hosts via a LAN. Multiple

clients and parallel connections are needed to saturate the

server. Untuned, these servers can handle 35,500 TCP

connections per second in a simple connection setup and

teardown test, or 28,400 connections per second running

Apache serving a small static file.

To determine the effect of tcpcrypt, first we need a

better control experiment because the untuned numbers

above, although typical of most real-world installations,



fail to fully utilize the machine, leaving some idle time. It

took considerable tuning4 to get the connection setup and

teardown test to saturate all the cores. Such a setup is not

realistic for normal operation, but we wish to compare

against the best-case vanilla TCP, not one that leaves un-

used CPU cycles. We will compare this optimized TCP

against SSL and tcpcrypt.

We expect tcpcrypt to slow down TCP’s connection

throughput in two main ways. First, uncached tcpcrypt

connections use public key operations to setup a connec-

tion. This cost is predominantly born by clients, which

perform the more expensive RSA decryption operation.

We use 2048-bit RSA-3 keys in all benchmarks.

Second, packets are MACed and thus require more

CPU cycles and memory accesses. Even with connec-

tion caching, which avoids the need for public key ci-

pher operations, four out of six of the packets in an

accept/close cycle are MACed (two ACKs and two

FINs). We therefore expect a performance degrada-

tion both in the uncached and cached connection cases,

though uncached connections will be more expensive.

We expect SSL to perform less well than tcpcrypt for

two reasons. First, it requires more RTTs to complete a

connection because SSL’s handshake can only start after

TCP’s handshake. More notably, uncached SSL connec-

tions should be much slower than tcpcrypt’s because an

SSL server performs the more expensive RSA decryption

operation. However SSL also authenticates the server, so

this is not an apples-to-apples comparison. We shall ex-

amine the cost of tcpcrypt’s authentication in Section 6.2.

Connection rate (conn/s)

Protocol Native Divert

TCP server 98,434 61,515

tcpcrypt server (cached) 70,044 38,832

tcpcrypt server (uncached) 27,070 21,908

SSL server (cached) 39,785 27,348

SSL server (uncached) 754 743

tcpcrypt client (uncached) 794 749

Table 1: Connection setup rate of tcpcrypt.

Table 1 shows the results. Both the cached case (same

client reconnecting) and uncached case (new client, re-

quiring public key cipher operations) are shown. The

two columns benchmark our two tcpcrypt implementa-

tions: the kernel one (“Native”) and the userspace divert

socket one. To get divert numbers for TCP and SSL,

4This involved running multiple instances of the benchmark on dif-

ferent ports to avoid kernel locks on accept. We set the affinity of

each benchmark to one CPU, and used a different NIC per benchmark,

with the NIC’s interrupt affinity set to the same CPU as the benchmark

using the NIC. This resolved in optimal packet scheduling and load

balancing that finally brought the system to zero idle time.

we divert all traffic to userspace and back to the ker-

nel; although this isn’t useful, it allows us to separate

out the different costs and see the overhead of the divert

socket separately from additional protocol mechanism in

the tcpcrypt userspace implementation.

Tcpcrypt outperforms SSL in the uncached case by a

large margin due to reversing the asymmetric RSA costs;

the client bears this cost. Tcpcrypt’s cached performance

is also better than SSL. We note that our kernel im-

plementation is not fully optimized, so it may well be

possible to get even greater performance. For example,

we could encrypt and MAC data while copying it from

userspace rather than doing it on a later pass. This would

be an optimization similar to that for checksum calcula-

tion already used in Linux.

While TCP can be up to 41% faster for cached con-

nections and 3.6× faster for uncached ones, we believe

that the absolute performance numbers of tcpcrypt have

their own merit. Recall that a heavily loaded website

like Youtube averages 11,500 connections per second

and tcpcrypt should be able to sustain such high load.

Also recall that our untuned default configuration server

can only handle 35,500 connections running the same

benchmark of Table 1, also a target that tcpcrypt can meet

if some sessions are cached.

The divert socket implementation is slower than our

kernel one due to the multiple copies needed for each

packet, from the kernel to userspace, and then back to

the kernel. Furthermore the userspace implementation

needs to (wastefully) duplicate TCP functionality already

present in the kernel such as checksum calculations and

protocol control block lookups. However, we believe that

the absolute performance numbers of our divert socket

implementation are sufficient for many situations, espe-

cially on clients, where simple installation may be a pri-

ority over performance.

6.2 Authenticated connection setup rate

While Table 1 included SSL as a reference point, it can-

not be used to directly compare the two systems be-

cause SSL performs authentication by default and thus

is stronger than unauthenticated tcpcrypt. As tcpcrypt

leaves authentication to applications, we are free to ex-

amine different authentication schemes. Our authentica-

tion benchmarks cover: tcpcrypt with batch signing (SSL

replacement), CMAC password-based mutual authenti-

cation (vulnerable to offline dictionary attacks), batch

signing combined with CMAC, and PAKE+

2 password-

based mutual authentication (both resistant to offline dic-

tionary attacks). The benchmark and setup is identical

to our previous benchmark, but with added application-

level authentication after connection setup. We expect

tcpcrypt with batch signing to outperform SSL when
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Figure 3: tcpcrypt’s authenticated connection setup rate.

batching more than one request, as RSA signatures will

be amortized. We expect CMAC to outperform RSA-

based authentication, because it uses symmetric cryptog-

raphy only. Our PAKE implementation is so far unop-

timized, but even so we expect it to be faster than RSA

because it replaces the expensive RSA signature with a

few elliptic-curve operations.

Figure 3 shows tcpcrypt’s authenticated connection

setup rate when using our kernel implementation (“Na-

tive”) and our userspace divert socket one. Batch signing

performs differently depending on the size of the batch

and Figure 3(b) shows how this scales. Most of the ben-

efits of batch signing arise even with a parameter as low

as 100, a number of concurrent clients easily reached

when the server is under load. Figure 3(a) clearly shows

that there is a range of performance characteristics which

applications may choose from. With SSL instead, ap-

plications are forced to use relatively low performance

one-way authentication. Clearly, one size does not fit all.

With tcpcrypt, applications can choose any combination

of one-way or two-way authentication and higher perfor-

mance at lower security or lower performance at higher

security. For example, a busy web forum might choose

CMAC for its authentication as it requires two-way au-

thentication and high performance, but perhaps is not so

security-critical that it needs to thwart offline dictionary

Connect time (ms)

Protocol LAN WAN

TCP 0.2 105

Tcpcrypt cached 0.3 103

Tcpcrypt not cached 11.3 219

Tcpcrypt CMAC 11.4 320

Tcpcrypt PAKE 15.2 426

SSL cached 0.7 210

SSL not cached 11.6 321

Table 2: Connection setup time.

attacks. This setup would perform 36x faster than SSL

on uncached connections, providing stronger (two-way)

authentication. A bank instead, might choose PAKE for

its authentication, performing slower, but still twice as

fast as SSL. Alternatively if a certificate is available,

signing plus CMAC could be 24x faster than SSL and

still resist offline dictionary attacks. A site requiring only

one-way authentication, like a checkout from an online

shop that does not require login, can perform up to 26x

faster than SSL when loaded and handling over 150 con-

current requests. Tcpcrypt with batch signing is therefore

a viable drop-in replacement for SSL, as in all cases its

connection setup performance is superior (we shall ex-

amine data throughput in Section 6.4). Authentication

adds little cost to tcpcrypt: 2% penalty with CMAC or

28% with batch signing under load. We believe this per-

formance to be practical for many servers.

For most clients the performance of the divert socket

implementation will be sufficient, providing an easily in-

stalled alternative.

Hardware is often used to offload expensive public key

cryptography. For example, Sun’s UltraSPARC T1 has

a Modular Arithmetic Unit for RSA, and can do 2,300

2048-bit signatures per second using all 32 cores [18].

Tcpcrypt outperforms this using only eight general pur-

pose cores, showing how careful protocol design can

avoid the need to throw hardware (and money) at the

problem. We argue that offloading asymmetric encryp-

tion is no longer needed for network encryption.

6.3 Connection latency

Throughput is not the only important metric—

connection setup latency is also important. We

compare the connection setup time from the client’s

point of view for TCP, SSL and tcpcrypt. We expect

tcpcrypt to setup connections faster than SSL because

tcpcrypt’s handshake requires fewer round trips. Table 2

shows the time to establish a connection on a LAN

(0.2ms RTT) and on a WAN (100ms RTT).

When the connection is cached, tcpcrypt adds very



little delay to TCP because no extra RTTs are needed.

Tcpcrypt does extra work to advance keys and MAC

the ACK, hence it takes fractionally longer. SSL

cached takes considerably longer because its negotiation

can only start after TCP’s handshake finishes whereas

tcpcrypt uses the three-way handshake. In the non-

cached case tcpcrypt and SSL perform similarly on the

LAN as RSA dominates the cost. The main difference

is that tcpcrypt is client-limited whereas SSL is server-

limited. On the WAN, RTT dominates; tcpcrypt costs

one RTT more than TCP, but one RTT less than SSL as

it needs fewer messages to complete the handshake. Au-

thenticating an uncached tcpcrypt connection, for exam-

ple using CMAC or PAKE, adds extra latency.

With batch-signing there might be a concern that the

queuing of requests to be signed might add extra latency.

In fact this is not the case—our implementation signs

whatever queue is available as fast as it can. Even the fact

that tcpcrypt with signing requires two RSA operations

does not add to latency—the expensive decrypt operation

on the client takes place in parallel with the sign opera-

tion on the server, so negligible extra latency is required

beyond the extra RTT needed for authentication.

The main effect of batch signing is in fact to reduce la-

tency as the server becomes loaded. This is shown in Fig-

ure 4, which graphs connection latency against the num-

ber of connections per second the server handles. As the

load increases eventually the server saturates and the la-

tency increases extremely rapidly. The figure shows SSL

latency and tcpcrypt latency when the maximum batch

size has been artificially limited to 1, 5 and 10. SSL and

tcpcrypt with a batch size of one are indistinguishable on

this graph, so we only plot one line. It is clear that when

the server has CPU cycles to spare, the batch size has

no adverse effect on latency. In fact, quite the reverse—

batching reduces the variance (the plot shows 10th and

90th percentiles as error bars), because short-term varia-

tions in arrival rate map into variation in batch size rather

than variation in CPU load. More importantly, allowing

larger batch sizes allows the server to saturate much later,

and so maintain this low latency across a much wider

range of server workloads.

6.4 Data transfer rates

We now account for the cost of symmetric encryption

and determine the maximum data throughput one can ex-

pect with tcpcrypt. We benchmark data throughput when

transmitted with TCP, tcpcrypt and SSL. To fully satu-

rate the CPU we ran one benchmark program per core

and NIC pair, setting the affinity of the benchmark and

NIC to a particular core. Otherwise, packet scheduling

was suboptimal resulting in idle time. We expect SSL

and tcpcrypt performance to be similar as both are do-
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Figure 4: Latency as connection rate increases.

Transfer Throughput (Mbit/s)

Protocol Native Divert

TCP 12,954+ 3,357

tcpcrypt AES-SHA1 3,968 1,752

SSL AES-SHA1 3,692 1,939

Table 3: tcpcrypt’s data throughput.

ing AES128 and HMAC-SHA1. Obviously, vanilla TCP

will be fastest as it need not encrypt or MAC.

Table 3 shows the data throughput of tcpcrypt, for our

kernel implementation (“Native”) and our userspace di-

vert socket one. We were unable to saturate the CPU

on the TCP benchmark (11% idle time) as we saturated

all available NICs on the server. Tcpcrypt outperforms

SSL by 7.4%. This was unexpected as the two essen-

tially perform the same tasks: AES and SHA1. We are

using different implementations for AES (Linux’s ker-

nel vs. OpenSSL) though we found the two to perform

similarly when benchmarked individually. The funda-

mental differences between tcpcrypt and SSL are that

SSL must do its own data segmentation and encapsula-

tion (in addition to TCP’s) thus needs more work than

tcpcrypt. SSL MACs at a message boundary which

can span multiple packets, whereas tcpcrypt must MAC

once per packet. Tcpcrypt is MACing slightly more data

as it includes packet headers, though the cost of SSL’s

message encapsulation seems to outweigh the additional

bytes MACed by tcpcrypt. Overall, however, CPUs are

powerful enough to fully encrypt a one Gigabit link, and

in fact even more. Client machines seldom have more ca-

pacity than that, and even our userspace implementation

provides sufficient performance for those cases.

Most relevant to servers, higher rates are possible

by using faster ciphers and MACs; tcpcrypt achieves

7,486Mbit/s using Salsa20/12 and UMAC. High-speed

AES is possible too now that AES-enhanced CPUs are

becoming ubiquitous, like Intel’s Westmere CPU [8],

Sun’s UltraSPARC T2 [2] and VIA’s processors [1]. On

a dual-core 3.33GHz desktop i5 with a 10Gb/s NIC,



Apache, static content (req/s)

Protocol Native Divert

TCP 60,156 27,196

tcpcrypt (cached) 42,440 20,034

tcpcrypt (uncached) 19,153 14,215

SSL (cached) 19,787 12,063

SSL (uncached) 737 705

Table 4: Apache performance serving static content.

tcpcrypt performed 8,835Mbit/s using AES-UMAC,

even without TCP segmentation offloading and optimiza-

tions in tcpcrypt. As an experiment, we were able to

saturate 10Gb/s by using jumbo frames or by overclock-

ing the box to 3.75GHz. We thus soon expect CPUs that

will permit 10Gig AES networking—in fact, this is likely

possible today if a six-core server i5 is used.

6.5 Application performance: Apache

We now study the overhead of tcpcrypt when used in a

real application. We test the Apache web server (v2.2.11)

serving a 44 byte static file. This setup has low ap-

plication overhead, emphasizing overhead imposed by

the networking stack. With a default configuration, our

server can handle 28,400 requests per second though the

CPUs remain unsaturated. To fully saturate CPUs, we

must run multiple Apache instances, each on a different

TCP port, serving traffic on a different NIC. Based on

our microbenchmarks, we expect tcpcrypt to outperform

SSL and have lower performance than TCP. We do not

perform any authentication on this tcpcrypt benchmark,

so SSL provides stronger guarantees in this case. How-

ever, as discussed earlier, authentication can be added to

tcpcrypt at a relatively low cost if needed.

Table 4 shows the results of our Apache benchmark.

Because real-world web traffic is a mix of new and re-

turning clients, connection setup can quickly become a

bottleneck for SSL. Tcpcrypt, on the other hand, main-

tains a high connection rate (31% of native TCP) even

for new clients. Note also that the case of small, static

files is a worst-case benchmark for connection setup. We

tried benchmarking WordPress, a more CPU-intensive

application. Neither tcpcrypt nor SSL caused a measur-

able slowdown. This test demonstrates that ubiquitous

encryption is feasible when the application is the bottle-

neck, and in most cases even if it is not.

6.6 Compatibility

Incremental deployment is one of our chief goals. Es-

sentially this entails gracefully falling back to TCP so

that connections are guaranteed to succeed. Users will

not enable tcpcrypt if doing causes their connections to

fail. Tcpcrypt falls back gracefully so long as packets

with the CRYPT option do not get dropped. Otherwise,

tcpcrypt might indefinitely send SYN packets with the

CRYPT option, and the connection would fail when it

would succeed using a virgin SYN packet. To gauge

whether this is a problem, we initiated tcpcrypt connec-

tions to the top 10,000 sites listed on Alexa. Specifically,

we sent a SYN with the CRYPT-HELLO option set, ex-

pecting to get a SYN-ACK back. If not, we considered

the packet dropped. We retransmitted SYNs to detect

packet loss. This gives a rough estimate of how many

connections would fail because of tcpcrypt.

Of the Alexa top 10,000 sites, we found 15 (0.015%)

that did not respond with a SYN-ACK to a tcpcrypt SYN.

Of these, three were on the same network. Given such a

low failure rate, we are optimistic that tcpcrypt will work

most of the time and can be safely deployed. However,

by default, tcpcrypt will try to revert to standard TCP in

case it does not receive a SYN-ACK after sending a few

tcpcrypt SYNs to ensure reachability.

We do not expect tcpcrypt to suffer ECN’s fate in

terms of compatibility. ECN used reserved bits in the

TCP header which would trigger IDSs and cause unde-

fined behavior. Instead, tcpcrypt uses options as dic-

tated by TCP’s specification and is not anomalous in

any way—for instance, even during re-keying the proto-

col design ensures that retransmissions always produce

the same payload bytes for a given range of sequence

numbers. We thus believe that tcpcrypt can safely be

deployed on today’s Internet as it will, for the majority

of users, provide stronger security without breaking con-

nections or noticeably reducing performance.

7 Related work

We categorize related work based on the networking

stack layer it operates in. The network layer is domi-

nated by IPSec-based solutions. IPSec [16] encrypts all

data above the network layer. However, IPSec has not

enjoyed widespread deployment and use, so a reasonable

fear is that tcpcrypt could endure the same fate. Fortu-

nately, several factors make it easier to deploy tcpcrypt

and provide greater incentive to do so, leaving us some

hope that ubiquitous encryption can succeed at the trans-

port layer even if it has not at the network layer.

A big challenge to IPSec is that it breaks middleboxes

that require access to the transport layer. Given the in-

creasing prevalence of NAT in particular, this excludes

a large portion of the population from using IPSec.

Tcpcrypt, by contrast, operates at the transport layer and

so avoids these problems. Another challenge for IPSec

is that it is hard to create a notion of a “session” in a

connection-less environment (the network layer). Thus,

while IPSec is good at authenticating hosts to one an-



other for purposes such as virtual private networks, it

would be difficult and cumbersome to authenticate indi-

vidual users, processes, and connections between hosts.

Moreover, some transport-level security issues, such as

protecting against wrapped acknowledgment numbers,

are harder to reason about in IPSec.

Conversely, there are several incentives for deploying

tcpcrypt that have no analogue with IPSec. One is that it

can be integrated in a backwards-compatible way with

SSL and significantly increase performance. By con-

trast, SSL over IPSec would require double-encryption,

reducing performance. Second, TCP multipath requires a

means of authenticating the same endpoint with multiple

IP addresses, which tcpcrypt makes much easier. That

said, tcpcrypt is less general than IPSec, which encrypts

everything above IP, including UDP.

Better Than Nothing Security (BTNS) [26] is IPSec

without a PKI, thus providing no security guarantees

against active attackers. This is similar to default

tcpcrypt. However, tcpcrypt additionally exposes the

necessary hooks so that applications can perform au-

thenticate in a variety of ways to guarantee security.

Opportunistic encryption using IKE [23] specifies how

to use IPSec with certificates obtained from DNSSEC.

Tcpcrypt would need application support to integrate

with DNSSEC.

We found no privacy solutions integrated into the

transport layer. There are, however, integrity solutions.

TCP MD5 [11] and AO [27] provide authentication and

integrity protection within TCP. Tcpcrypt provides more

functionality than these options by providing encryption.

Moreover, tcpcrypt is fundamentally different as it re-

quires no user setup. The session is established using

ephemeral keys, and authentication can happen over the

session itself. TCP MD5 and AO require establishing

pre-shared secrets through out-of-band means. The main

use of TCP MD5 and AO is to protect manually con-

figured BGP sessions, which tcpcrypt can do as well by

disabling unauthenticated RST packets. Also, TCP AO

does not interoperate with NATs (which is okay for its in-

tended use, as BGP is not usually spoken through NATs).

The dominant encryption solution above the transport

layer is SSL [22]. Tcpcrypt offers a number of bene-

fits over SSL, including better server performance, in-

trinsic forward secrecy, and integrity protection for the

TCP session itself. Tcpcrypt is also more general, as it

supports arbitrary authentication mechanisms and does

not require a PKI. Finally, tcpcrypt is backward com-

patible with legacy applications and legacy hosts, which

should ease ubiquitous deployment. Being more general,

tcpcrypt can be used as a drop-in replacement for SSL,

and we have in fact produced an SSL library that falls

back to SSL if tcpcrypt is unavailable.

ObsTCP [17] also aims to provide opportunistic en-

cryption, but is only designed to provide security in ag-

gregate, not for specifically targeted connections. The

author states, “We continue to advocate TLS as the only

user facing transport security,” meaning ObsTCP will

duplicate encryption done by TLS, not protect transport

headers, and not integrate with application-level authen-

tication. ObsTCP requires no new TCP options and no

extra round trips for connection setup, but the downside

is that applications must be modified and that the first

connection between two hosts remains unencrypted un-

less one knows that the other supports ObsTCP.

While tcpcrypt combines only well-known techniques,

no other existing protocol can accomplish all of its

goals. Specifically, tcpcrypt can be incrementally de-

ployed on today’s Internet, works out-of-the-box (even

through NATs) without manual configuration, provides

high enough performance to be on by default, and allows

applications to integrate transport-layer security with ar-

bitrary higher-level authentication techniques. The Inter-

net demands higher security, hardware is ready for it, and

the cryptographic techniques were waiting to be pieced

together; tcpcrypt does so, and we believe our evaluation

shows it could be readily deployed.

8 Conclusion

Tcpcrypt demonstrates that ubiquitous encryption of

TCP traffic is technically feasible on modern hardware.

By leveraging the asymmetry of common public key ci-

phers, it is possible for a server to accept and service

around 20,000 tcpcrypt connections per second without

session caching. Even higher rates are possible with

caching. Data transfer rates are not an issue either; AES-

SHA1 encryption and integrity protection can be done at

several gigabits per second without hardware support on

2008-era hardware. The newest Intel CPUs incorporat-

ing AES instructions are even faster—tcpcrypt can reach

9Gb/s using AES-UMAC on a dual-core i5 desktop, sug-

gesting that six-core i5 servers should handle 10Gb/s.

These results suggest that tcpcrypt should have a neg-

ligible impact on the vast majority of applications.

The main contribution of this work is not performance,

though this is a prerequisite. There are no new crypto-

graphic primitives, nor is the protocol especially novel.

The main contribution is from putting well-understood

components together in the right way to permit rapid and

universal deployment of opportunistic encryption, and

then providing the right hooks to encourage innovation

and deployment of much better and more appropriate

application-level authentication. This ability to integrate

transport-layer security with application-level authenti-

cation largely obviates the need for applications to en-

crypt their own network traffic, thereby minimizing du-

plication of functionality.



As an example, we showed how a simple batch-

signing server-authentication scheme can leverage

tcpcrypt to provide forward secrecy and the same se-

curity as SSL while handling 25 times the connections

per second. At the same time, the protocol allows an

SSL server to fall back gracefully to regular SSL behav-

ior when one or the other side cannot utilize tcpcrypt for

authentication.

We also demonstrated the use of tcpcrypt to bootstrap

both weak and strong password-based mutual authentica-

tion (using CMAC and PAKE respectively). Password-

based authentication without mutual authentication, even

over SSL, really should be a thing of the past. Using

tcpcrypt with batch signing and CMAC mutual authenti-

cation is strictly stronger than HTTP Digest authentica-

tion over an SSL session, and more than 20 times faster.

Using tcpcrypt and our unoptimized PAKE implementa-

tion is almost twice as fast as SSL, and provides stronger

security. Many other authentication mechanisms are pos-

sible; we believe that tcpcrypt’s generality and simple

application-level hooks are exactly what is required to

get application writers to think about the form of authen-

tication they really need, once they can address authen-

tication separately from the question of how to encrypt

session data.

Finally, tcpcrypt interoperates seamlessly with legacy

applications, TCP stacks, and middleboxes, making it

easy to deploy incrementally. For all of the above

reasons, we believe that it now makes sense to make

transport-layer encryption the default. Make it happen

by installing tcpcrypt from http://tcpcrypt.org.
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