
Post-quantum cryptography proposal:

ThreeBears

Inventor, developer and submitter

Mike Hamburg

Rambus Security Division

E-mail: mhamburg@rambus.com

Telephone: +1-415-390-4344

425 Market St, 11th floor

San Francisco, California 94105

United States

Owner

Rambus, Inc.

Telephone: +1-408-462-8000

1050 Enterprise Way, Suite 700

Sunnyvale, California 94089

United States

November 29, 2017

Contents

1 Introduction 4

1.1 System overview . 4

2 Specification 6

2.1 Notation . 6

2.2 Encoding . 7

2.3 Parameters . 8

2.4 Common subroutines . 10

2.4.1 Hash functions . 10

2.4.2 Sampling . 10

2.4.3 Extracting bits from a number 12

2.4.4 Forward error correction 12

2.5 Keypair generation . 14

2.6 Encapsulation . 14

2.7 Decapsulation . 17

3 Design Rationale 20

3.1 Integer MLWE problem . 20

3.2 Parameter choices . 23

3.3 Primary recommendation . 26

4 Security analysis 27

4.1 The I-MLWE problem . 27

4.2 The CCA2 transform . 27

5 Analysis of known attacks 28

5.1 Brute force . 28

5.2 Inverting the hash . 29

5.3 Lattice reduction . 29

5.4 Multi-target lattice attacks 30

5.5 Hybrid attack . 30

5.6 Chosen ciphertext . 30

2

6 Performance Analysis 32

6.1 Time . 32

6.2 Space . 34

7 Advantages and limitations 36

7.1 Advantages . 36

7.2 Limitations . 37

7.3 Suitability for constrained environments 38

8 Absence of backdoors 38

9 Acknowledgments 38

A Intellectual property statements 43

A.1 Statement by Each Submitter 43

A.2 Statement by Reference/Optimized Implementations? Owner 45

3

1 Introduction

This is the specification of the ThreeBears post-quantum key encapsula-

tion mechanism.

ThreeBears is based on the Lyubashevsky-Peikert-Regev [LPR10] and

Ding [DXL12] ring learning with errors (RLWE) cryptosystems. More di-

rectly, it is based on Alkim et. al’s NewHope [ADPS15] and Bos et. al’s

Kyber [BDK+17], the latter of which uses module learning with errors

(MLWE). We replaced the polynomial ring underlying this module with the

integers modulo a generalized Mersenne number, thereby making it inte-

ger module learning with errors (I-MLWE), as in Gu’s work [Chu17]. We

also use forward error correction, like Saarinen’s trunc8 and Hila5 [Saa16,

Saa17].

ThreeBears’s name comes from the fact that its modulus has the same

“golden-ratio Solinas” shape as Ed448-Goldilocks [Ham15], and indeed some

of the arithmetic code in its implementation is derived from Goldilocks’

arithmetic code.

One of our goals with ThreeBears is to encourage exploration of poten-

tially desirable but less conventional designs. This is why ThreeBears

uses I-MLWE instead of MLWE; why the private key as only a seed; why

we use explicit rejection; and why we omit the Targhi-Unruh hash.

1.1 System overview

At a high level, ThreeBears works like [LPR10]. All computations take

place modulo N , which is a large generalized Mersenne prime. A first party,

Alice, chooses a uniformly random matrix M and random vectors a and εa

from a “small” distribution χ. She sends M and Ma+ εa to a second party,

Bob. Bob likewise chooses vectors b and εb from the same distribution χ,

and sends back b>M + ε>b . Then Alice can compute Ca := b>Ma + ε>b a,

and Bob can compute Cb := b>Ma+ b>εa. Ca and Cb are roughly equal if

4

Alice Bob

(M,A)

M
R← Rd×d

a, εa
R← χd, χd

A←Ma+ εa

(B,E)

b, εb, ε
′ R← χd, χd, χ

B ← b>M + ε>b

ept← encode(pt)

E ← ept + b>A+ ε′k ← round(E−Ba)

Figure 1: Simplified I-MLWE key exchange from [LPR10]

a, b, εa and εb are small enough. Bob uses this approximately-shared value to

encrypt a plaintext: he encodes it so that small differences will not change

its value, and adds his estimate of Cb to it. Alice subtracts her estimate

Ca, and rounds off the hopefully-small error to recover the plaintext. This

process is shown in Figure 1.

A few simple changes from [DXL12, ADPS16, BDK+17] make the system

more practical. Alice need not send the large matrix M itself, since it’s

uniformly random: she can just send a seed which is hashed to make M .

Also, Bob need not send E: he can send just the coefficients where he has

actually encrypted plaintext bits, and he can round those coefficients to only

a few bits each. Since the system can only send a small number of plaintext

bits, it is best used as a key encapsulation mechanism (KEM). It sends a

key, and then the key is used to encrypt an arbitrary message.

Finally, while this system is secure against eavesdropping, it needs modifica-

tion to prevent chosen-ciphertext attacks [HGNP+03], namely the Fujisaki-

Okamoto transform [FO99]. To make sure that Bob acted honestly, instead

of sampling χ at random, he samples it pseudorandomly using a seed. Then

instead of encrypting a message directly, he encrypts the seed. Alice de-

crypts the seed, checks that Bob’s ciphertext was formed honestly, and then

5

uses the seed to generate a key to decrypt Bob’s message. We use a variant

of this transform, influenced by Kyber’s interpretation of the Targhi-Unruh

transform [BDK+17, TU16].

We specify versions of ThreeBears with and without the Fujisaki-Okamoto

transform. The variants without it are faster and slightly more secure

against passive attacks, but they’re insecure against chosen-ciphertext at-

tacks. So they are suitable for ephemeral key exchange, but not for encryp-

tion with long-term keys.

2 Specification

Here is the detailed specification of ThreeBears.

2.1 Notation

Integers Let Z denote the integers, and Z/NZ the ring of integers modulo

some integer N . For an element x ∈ Z/NZ, let res(x) be its value as an

integer in {0, . . . , N − 1}.

For a real number r, brc (“floor of r”) is the greatest integer ≤ r; dre
(“ceiling of r”) is the least integer ≥ r; and bre := br+ 1/2c is the rounding

of r to the nearest integer, with half rounding up.

Sequences Let Tn denote the set of sequences of n elements each of type

T . We use the notation Ja, b, . . . , zK or JSiKn−1i=0 for such a sequence. If S is

a sequence of n elements and 0 ≤ i < n, then Si is its ith element.

We describe our error-correcting code in terms of bit-sequences, i.e. elements

of {0, 1}n. Let a ⊕ b be the bitwise exclusive-or of two bit-sequences. If

a and b aren’t the same length, we zero-pad the shorter sequence to the

length of the longer one. We use the notation
⊕
S for the ⊕-sum of many

sequences.

6

2.2 Encoding

Let B denote the set of bytes, i.e. {0, . . . , 255}.

Public keys, private keys and capsules are stored and transmitted as fixed-

length sequences of bytes, that is, as elements of Bn for some n which de-

pends on system parameters. To avoid filling the specification with concate-

nation and indexing, we will define common encodings here.

The encodings used in ThreeBears are pervasively little-endian and fixed-

length. That is, when converting between a sequence of smaller numbers

(bits, bytes, nibbles...) and a larger number, the first (or rather, 0th) element

is always the least significant. Also, the number of elements in a sequence

is always fixed by its type and the parameter set, so we never strip zeros or

use length padding.

An element z of Z/NZ is encoded as a little-endian byte sequence B of

length bytelength(N) := dlog256Ne, such that

bytelength(N)−1∑
i=0

Bi · 256i = res(z)

To decode, we simply compute Bi · 256i mod N without checking that the

encoded residue is less than N . This encoding is malleable, but capsules in

our CCA-secure scheme are not malleable.

ThreeBears’s encapsulated keys contain a sequence of 4-bit nibbles, i.e.

elements of {0, . . . , 15}. We encode this sequence by packing two nibbles into

a byte1 in little-endian order. So a nibble sequence JsK encodes as

Js2·i + 16 · s2·i+1K
dlength(s)/2e
i=0

We will mention explicitly what part of the capsule is encoded as nib-

bles.

1These sequences always have even length, but if they didn’t then the last nibble would

be encoded in its own byte.

7

Description Name Value

Independent parameters:

Specification version version 1

Private key bytes privateKeyBytes 40

Matrix seed bytes matrixSeedBytes 24

Encryption seed bytes encSeedBytes 32

Initialization vector bytes ivBytes 0

Shared secret bytes sharedSecretBytes 32

Bits per digit lgx 10

Ring dimension D 312

Module dimension d varies: 2 to 4

Noise variance σ2 varies: 1
4 to 1

Encryption rounding precision ` 4

Forward error correction bits fecBits 18

CCA security cca varies: 0 or 1

Derived parameters:

Radix x 2lgx

Modulus N xD − xD/2 − 1

Clarifier clar xD/2 − 1

Table 1: ThreeBears global parameters

The same little-endian rules apply for converting between bit sequences and

byte sequences. Any other tuple, vector or sequence of items is encoded as

the concatenation of the byte encodings of those items.

2.3 Parameters

An instance of ThreeBears has many parameters. About half of these are

lengths of various seeds, which are fixed according to security requirements.

The list is shown in Table 1. These parameters are in scope in every function

in this specification. For example, when we refer to d, we mean the d-

parameter in the current parameter set.

8

Quantum security

System d cca σ2 Failure CCA Lattice Class

BabyBear 2
0 1 2−58 152 II

1 5/8 2−148 122 141 II

MamaBear 3
0 7/8 2−51 237 V

1 1/2 2−147 137 219 IV

PapaBear 3
0 3/4 2−52 320 V

1 3/8 2−188 173 292 V

Table 2: ThreeBears recommended parameters. Security levels are given

as the log2 of the estimated work to break the system using a lattice or

chosen-ciphertext attack on a quantum computer.

Classical security

System lgx D d cca σ2 Failure CCA Lattice

TeddyBear 9 240 1 1 3/4 2−58 56

DropBear 10 312 2 1 2 2−6 6 187

Table 3: ThreeBears toy parameters.

The parameters for the recommended instances are shown in Table 2. Each

system has variants for CPA-secure and CCA-secure key exchange. Our

primary recommendation is MamaBear. For each system, we estimated the

failure probability, the difficulty of attacking the mode with lattice attacks,

and (for CCA-secure variants) the difficulty of a chosen-ciphertext attack

with a quantum computer. See Section 5 for a detailed analysis.

We also define two sets of toy parameters, shown in Table 3. TeddyBear is

simply too small: it has dimension 1 · 240 compared to BabyBear’s 2 · 312.

We estimate that it will still take about 256 effort to break this system,

which is why we reduced the dimension from 312 to 240. On the other

hand, DropBear should be secure against CPA attacks, but its failure rate

of around 1.1% should make it vulnerable to CCA attacks.

9

2.4 Common subroutines

2.4.1 Hash functions

In order to make sure that the hash functions called by instances of Three-

Bears are all distinct, they are prefixed with a parameter block pblock.

This is formed by concatenating the independent parameters listed in Ta-

ble 1, using one byte per parameter with the following exceptions: D is

greater than 256, so it is encoded as two bytes (little-endian); and σ2 is a

real number where 0 < σ2 ≤ 2, so it is encoded as 128 · σ2 − 1. The total

size of the parameter block is 14 bytes.

As an example, the parameter block for MamaBear in CCA-secure mode

is

J1, 40, 24, 32, 0, 32, 10, 56, 1, 3, 63, 4, 18, 1K

Since there are multiple uses of the hash function within ThreeBears, we

also separate them with a 1-byte “purpose” p. For word-alignment purposes,

we add a zero byte between the parameter block and the purpose. The hash

function is therefore

Hp(data, L) := cSHAKE256(pblock || J0, pK || data, 8·L, “”, “ThreeBears”)

Here L is the length in bytes of the desired output. The cSHAKE256 hash

function is defined in [KjCP16]. We use only one personalization string to

avoid polluting the cSHAKE namespace, and to enable precomputation of the

first hash block.

2.4.2 Sampling

Uniform We construct the d × d matrix M by sampling each element

separately. We do this with a function that expand a short seed, and co-

ordinates 0 ≤ i, j < d, into a uniform sample mod N . This is shown in

Algorithm 1.

10

Algorithm 1: Uniform and noise samplers

Function uniform(seed, i, j) is
input : Seed of length matrixSeedBytes bytes; i and j in [0 .. d− 1]

output : Uniformly pseudorandom number modulo N

B ← H0(seed || Jd · j + iK, bytelength(N));

return B decoded as an element of Z/NZ;

end

Function noisep(seed, i) is
input : Purpose p; seed whose length depends on purpose; index i

require: σ2 must be either

in [0..12] and divisible by 1

128

in [12 ..1] and divisible by 1
32

in [1..32] and divisible by 1
8

exactly 2

output : Noise sample modulo N

B ← Hp(seed || JiK, D);

for j = 0 to d do

// Convert each byte to a digit with var σ2

sample← Bj ;

digitj ← 0;

for k = 0 to d2 · σ2e − 1 do

v ← 64 ·min(1, 2σ2 − k);

digitj ← digitj +
⌊
sample+v

256

⌋
+
⌊
sample−v

256

⌋
;

sample← sample · 4 mod 256;

end

end

return
D−1∑
j=0

digitj · xj mod N

end

11

Noise We will also need to sample noise modulo N from a distribution

whose “digits” are small, of variance σ2. The noise sampler is shown in

Algorithm 1. It works by expanding a seed to one byte per digit, and then

converting the digit to an integer with the right variance. With only one

byte per digit we can only sample distributions with certain variances, as

described in that algorithm’s requirements.

2.4.3 Extracting bits from a number

In order to encrypt using ThreeBears, we need to extract bits from an

approximate shared secret S mod N . Because our ring isn’t cyclotomic, the

digits of S don’t all have the same noise: the lowest and highest bits have

the least noise, and the middle ones have the most. We define a function

extractb(S, i) which returns the top b bits from the coefficient with the

ith-least noise, as shown in Algorithm 2.

Algorithm 2: Extracting the top b bits of the digit with the ith-least noise

Function extractb(S, i) is

if i is even then j ← i/2;

else j ← D − (i+ 1)/2;

return
⌊
res(S) · 2b/xj+1

⌋
;

end

2.4.4 Forward error correction

ThreeBears uses forward error correction (FEC). Let FecEncodeb and

FecDecodeb implement an error-correcting encoder and decoder, respec-

tively, where the decoder appends b = fecBits bits of error correction

informatioon. Because b might not be a multiple of 8, and because the

output of the FEC is encrypted on a bit-by-bit basis, we specify that the

encoder and decoder operate on bit sequences. If fecBits = 0, then no

12

error correction is used:

FecEncode0(s) = FecDecode0(s) = s

The rest of this section describes a Melas FEC encoder and decoder which

add 18 bits and correct up to 2 errors, roughly as in [LW87]. This FEC is

used by all our recommended parameters.

Encoding Let seqb(n) be the b-bit sequence of the bits of an integer n, in

little-endian order. For a bit a and sequence B, let

a ·B := Ja ·BiKlength(B)−1
i=0

For bit-sequences R and s of length b+ 1 and b respectively, let

step(R, s) := J(s⊕ (s0 ·R))iKbi=1

Let stepi(R, s) denote the ith iterate of step(R, ·) applied to s. Then

FecEncode18 appends an 18-bit syndrome as shown in Algorithm 3.

Algorithm 3: Melas FEC encode

Function syndrome18(B) is
input : Bit sequence of length n

output: Syndrome, a bit sequence of length 18.

P ← seq18+1(0x46231);

s← 0;

for i = 0 to n− 1 do s← step(P, s⊕ JBiK);
return s;

end

Function FecEncode18(B) is
return B || syndrome18(B)

end

13

Decoding Decoding is more complicated, because to locate two errors

it must solve a quadratic equation. Let Q := seq9+1(0x211). For 9-bit

sequences a and b, define the 9-bit sequence

a� b :=
8⊕
i=0

(
b8−i · stepi(Q, a)

)
The operations ⊕ and � define a field with 29 elements, with additive iden-

tity 0 and multiplicative identity seq9(0x100). That is, � is Montgomery

multiplication. Define a�n as the nth power of a under�-multiplication.

The rest of the decoding algorithm is shown in Algorithm 4.

Implementation This specification admits many optimizations. See the

melas fec.c from the Optimized Implementation for a fast, short, constant-

time implementation of the Melas FEC.

2.5 Keypair generation

We define key generation so that the private key is a uniformly random

byte string. Key online exchange implementations might cache intermediate

values, such as the private vector or matrix, but ThreeBears is fast enough

that this isn’t necessary.

2.6 Encapsulation

The encapsulation function is shown in Algorithm 6. It includes a determin-

istic version which is used for CCA-secure decapsulation. As with Keypair,

Encapsulate simply passes a random seed and iv to EncapsDet.

In the CCA-secure implementation of encapsulation, the noise is derived

from a seed, and the seed is used as plaintext, as required by the Fujisaki-

Okamoto transform. But in the ephemeral implementation, the noise and

plaintext are both derived from the seed using the hash function H2. The

14

Algorithm 4: Melas FEC decode

Function FecDecode18(B) is
input : Encoded bit sequence B of length n, where 18 ≤ n ≤ 511

output: Decoded bit sequence of length n− 18

// Form a quadratic equation from syndrome.

s← syndrome18(B);

Q← seq9+1(0x211);

c← step9(Q, s)� step9(Q, reverse(s));

r ← step17
(
Q, c�510

)
;

s0 ← step511−n(Q, s);

// Solve quadratic for error locators using half-trace

halfTraceTable← J36, 10, 43, 215, 52, 11, 116, 244, 0K;
halfTrace←

⊕8
i=0 (ri · seq9(halfTraceTablei));

(e0, e1)← (s0 � halfTrace, (s0 � halfTrace)⊕ s0));

// Correct the errors using the locators

for i = 0 to n− 18− 1 do

if stepi(Q, e0) = seq9(1) or stepi(Q, e1) = seq9(1) then

Bi ← Bi ⊕ 1;

end

end

return JBiKn−18−1i=0 ;

end

15

Algorithm 5: Keypair generation

Function GetPubKey(sk) is
input : Uniformly random private key sk of length privateKeyBytes

output: Public key pk

// Generate the private vector

for i = 0 to d− 1 do ai ← noise1(sk, i);

// Generate a random matrix, multiply and add noise

matrixSeed← H1(sk, matrixSeedLen);

for i, j = 0 to d− 1 do Mi,j ← uniform(matrixSeed, i, j);

for i = 0 to d− 1 do

Ai ← noise1(sk, d+ i) +
∑d−1

j=0 Mi,j · aj · clar
end

// Output

pk← (matrixSeed, JAiKd−1i=0);

return pk;

end

Function Keypair() is

sk← RandomBytes(privateKeyBytes);

return (sk, GetPubKey(sk));

end

16

reason is to avoid depending on circular security: in a quantum context it is

difficult to prove that deriving the noise from the plaintext is secure, even

in the random oracle model.

2.7 Decapsulation

The decapsulation algorithm, Decapsulate, takes as input a private key sk

and a capsule. It returns either a shared secret or the failure symbol ⊥, as

shown in Algorithm 7.

17

Algorithm 6: Encapsulation

Function EncapsDet(pk, seed, iv) is
input : Public key pk

input : Uniformly random seed of length encSeedBytes

input : Uniformly random iv of length ivBytes

output: Shared secret; capsule

// Parse the public key

(matrixSeed, JAiKd−1i=0)← pk;

// Generate ephemeral private key and make I-MLWE instance

for i = 0 to d− 1 do bi ← noise2(matrixSeed||seed||iv, i);
for i, j = 0 to d− 1 do Mi,j ← uniform(matrixSeed, i, j);

for i = 0 to d− 1 do

Bi ← noise2(seed, d+ i) +
∑d−1

j=0 Mj,i · bj · clar;

end

// Form plaintext; encrypt using approximate shared secret

C ← noise2(seed, 2 · d) +
∑d−1

j=0 Aj · bj · clar;

if CCA then pt← seed;

else pt← H2(matrixSeed||seed||iv, encSeedBytes);

encpt← FecEncode(pt as a sequence of bits);

for i = 0 to length(encpt)− 1 do

encri ← extract4(C, i) + 8 · encoded seedi mod 16;

end

// Output

shared secret← H2(matrixSeed||pt||iv, sharedSecretBytes);

capsule←
(
JBjKd−1j=0 , nibbles JencriK

length(pt)−1
i=0 , iv

)
;

return (shared secret, capsule);

end

Function Encapsulate(pk) is

(seed, iv)←(RandomBytes(encSeedBytes), RandomBytes(ivBytes));

return EncapsDet(pk, seed, iv);

end

18

Algorithm 7: Decapsulation

Function Decapsulate(sk, capsule) is
input : Private key sk, capsule

output: Shared secret or ⊥

// Unpack private key and capsule

for i = 0 to d− 1 do ai ← noise1(sk, i);(
JBjKd−1j=0 , nibbles JencriK, iv

)
← capsule;

// Calculate approximate shared secret and decrypt seed

C ← noise2(seed, 2 · d) +
∑d−1

j=0 Bj · aj · clar;

for i = 0 to length(encr) do

encoded seedi ←
⌊
2·encri−extract5(C,i)

2`

⌉
end

seed← FecDecode(encoded seed);

if CCA then

// Re-encapsulate to check that capsule was honest

(shared secret, capsule′)← EncapsDet(GetPubKey(sk), seed, iv);

if capsule′ 6= capsule then return ⊥;

else return shared secret;

else

// Don’t check: just calculate the shared secret

matrixSeed← H1(sk, matrixSeedLen);

shared secret← H2(matrixSeed||seed||iv, sharedSecretBytes);

return shared secret
end

end

19

3 Design Rationale

We based our overall design on Kyber [BDK+17]. We liked that module-

LWE allows parameters to be changed without changing too much code.

From that starting point we made many changes, as described in this sec-

tion.

3.1 Integer MLWE problem

We originally studied the integer version of the MLWE problem simply be-

cause it hadn’t received much attention before. We expected it to be strictly

worse than polynomial MLWE, and thus not worthy of a NIST submission.

But in fact, I-MLWE gives a range of desirable parameter sets which are

comparable to polynomial MLWE in efficiency, ease of implementation, and

(hopefully) security.

Private key as seed We chose to make the private key merely a seed,

because the key generation process is so fast that we might as well save

on storage. Applications which have lots of memory and only need keys

ephemerally can cache the intermediates ai, but that’s an implementation

decision. Furthermore, public-key regeneration can be efficiently fused with

re-encryption. This is because to re-encrypt, the recipient needs to com-

pute

B = b>M + ε>b , C = b>(Ma+ εa) + ε′b

The latter term can be rewritten as (b>M)a+ b>εa + ε′b, which costs a total

of d·(d+2) multiplications. Caching the public key component A := Ma+εa

would only reduce this to d · (d+ 1) multiplications, because b>M has to be

computed anyway.2

2The recipient could alternatively try to verify B,C by checking that C
?
= b>A + ε′b

and (B − ε>b) · a ?
= b>A, which would cost only 2 · d multiplications. However, this would

also verify with any value B′ where B′ − B is orthogonal to the secret key a, and giving

the adversary this information would be a huge boost to cryptanalysis. While our ring’s

20

Explicit rejection We had two options on how to deal with decapsulation

failures. We could reject explicitly by returning a special failure symbol “⊥”.

Or we could reject implicitly by returning a pseudorandom key, which would

cause later protocol steps to fail.

Theoretical work such as [SXY17] and [JZC+17] suggest that implicit rejec-

tion is easier to analyze, and it provides a slightly simpler API. However,

explicit rejection is simpler and faster, and has one fewer target for side-

channel analysis.

On balance, we have decided to go with explicit rejection.

No Targhi-Unruh hash We chose not to use an extra hash (as was done

in [TU16]), because we believe that it adds no security and is merely an

artifact of the proof. It is not required by [SXY17] or [JZC+17]. Our work in

progress shows that it doesn’t significantly impact security for ThreeBears

even though we use explicit rejection.

No hashing of public keys and ciphertexts We chose not to hash the

entire public key or entire ciphertext. Doing so would complicate and slow

down the implementation; would require more memory; and would prevent

efficient fusing of key generation and decryption. While hashing the public

key and ciphertext would be more conservative, our proof shows that it is

not required for CCA2 security.

However, we must hash some part of the public key into the encryption seed

to prevent batch failure attacks. Since the purpose of the matrix seed is to

prevent batch attacks in general, we chose to hash the matrix seed into the

encryption seed.

Of course, in a key exchange protocol the messages must be authenticated

somehow, and hashing them is one way to do that. But it composes better

to do this at the protocol layer, instead of having the KEM do it.

lack of zero divisors probably makes it hard to find such a B′, we cannot prove that it is

as hard as a full lattice attack, so we don’t allow this verification algorithm.

21

CPA-secure CCA-secure

d σ2 Failure Lattice σ2 Failure CCA Lattice

2 5/8 2−54 141 3/8 2−133 120 130

3 1/2 2−57 219 9/32 2−153 138 202

4 7/16 2−56 297 7/32 2−181 162 269

Table 4: Alternative parameters without error correction. D = 312, x = 210.

Melas code We thought the potential improvements from Saarinen’s error

correction [Saa16, Saa17] were too good not to investigate. In the context of

ThreeBears, they give a significant improvement, which must be traded

off against the increase in complexity.

We wanted to design the strongest possible error-correcting code in the least

amount of space and code complexity. The obvious choice was a BCH code,

which would add 9n bits to correct n errors. This would enable us to correct

up to 6 errors, since we have 312 − 256 = 56 bits of space, but decoding

many errors in constant time is rather complex. One error needs only LFSR

evaluation; two errors require solving a quadratic; three require Gaussian

elimination; and four or more require more advanced root-finding or brute-

force evaluation. So a two-error-correcting code seemed like a good tradeoff

between complexity and correction ability, and the Melas BCH code seemed

like the simplest variant.

Our Melas implementation has small code and memory requirements, runs in

constant time, and is so fast that its runtime is almost negligible. Its down-

sides are increased complexity, and a correspondingly wider attack surface

for side-channel and fault attacks.

Table 4 shows alternative parameters with no forward error correction. Ta-

ble 5 compares the effectiveness of BCH error-correcting codes which would

correct n errors using 9n bits. This allows more noise, and therefore in-

creases security at the cost of complexity. Preliminary work suggests that a

soft parity code should be almost as effective as a 1-error-correcting code,

which may be an interesting avenue for future work.

22

Errors corrected 0 soft 1 2 3 4 5 6

Variance in 32nds 9 12 13 16 18 20 22 24

Lattice security 202 210 213 219 223 227 230 233

Table 5: Effectiveness of error correction to increase security. Alternative

parameters with more or less error correction, with noise variance and lattice

security vs. a quantum computer. D = 312, d = 3, x = 210, CCA2-secure.

3.2 Parameter choices

Seeds The seed sizes in ThreeBears are designed for an overall 2256 or

larger search space. Thus the encryption seeds and transported keys are 256

bits. We don’t believe that multi-target key recovery attacks are a problem,

since they would take 2256/T time on a classical machine to recover one of T

keys by brute force, and do not admit a significant quantum speedup. But

protecting key generation is almost free, just by setting the private to 320

bits (40 bytes). This means a classical multi-target key-recovery attack on

264 keys would take 2256 effort.

Since encryption seeds are 256 bits, there is a multi-target attack when some-

one encrypts many ciphertexts under a single key. This can be mitigated by

attaching an initialization vector (IV) to each ciphertext. We specify how to

do this, but in our recommended parameters the IV is zero bytes long (i.e.

unused). This is because we don’t think that that the multi-target brute

force attack is a meaningful risk.

We chose a 192-bit matrix seed so that matrix seeds will almost certainly

never collide even with 264 honestly-generated keys. It would even be safe

to use a 128-bit matrix seed, since at worst a k-way collision would enable

a multi-target attack on k public keys at once.

Modulus We chose N to be prime to rule out attacks based on subrings.

We would have liked for N to be a Fermat prime, but there are no Fermat

primes of the right size. The next obvious choice would be a Mersenne prime

23

CPA-secure CCA-secure

d σ2 Failure Lattice σ2 Failure CCA Lattice

2 3/4 2−64 117 9/16 2−108 98 112

3 5/8 2−63 184 3/8 2−156 141 170

4 9/16 2−59 251 5/16 2−166 151 231

Table 6: Alternative parameters with D = 260, x = 210, soft parity FEC

2p − 1 = 2k · xD − 1, where k at best k can be ±1: k cannot be 0 because p

is prime. Therefore reduction modulo this prime would at least double the

noise amplitude and quadruple its variance.

So as far as we know, the best prime shape is a “golden-ratio Solinas” prime

xD − xD/2 − 1. Multiplying by clar := xD/2 − 1 and reducing modulo

this prime will amplify variance by 3/2 in the center digits. With this

amplification we needed x ≥ 210 for an acceptable failure probability, and

D ≥ 256 to transport a 256-bit key. This left the primes

22600 + 21300 − 1 and 23120 − 21560 − 1

We chose the latter for several reasons:

• The smaller prime is slightly greater than a power of 2. This would

require implementations to handle low-probability corner cases which

cannot happen with the larger prime.

• The larger prime better matches the NIST target security levels.

• The larger prime allows us to use FEC. The smaller prime would ac-

commodate a soft parity code, but no more.

• The larger prime is slightly simpler to implement efficiently.

The smaller prime would have enabled finer granularity in security level, but

we thought that the other considerations were more important. Potential

parameterizations with the smaller prime are shown in Table 6.

If ThreeBears’s small noise variance becomes a concern, then we can

use the same large modulus with D = 260 and x = 212 and much larger

24

noise. This would be useful if the hybrid attack [BGPW16] becomes a

major threat. But according to current estimates, it is much more difficult

to attack D = 312 and x = 210.

Rounding precision The encryption rounding precision ` is a tradeoff.

Larger ` adds to ciphertext size, but it decreases the failure probability. This

in turn allows more noise to be added, which increases security. According

to our security estimates, the greatest ratio of security strength to ciphertext

size is achieved with ` = 3, but with ` = 4 only slightly less. We chose ` = 4

because it’s simpler to implement.

Variance We chose the noise variance as a simple dyadic fraction. We

initially aimed to set the failure probability for CPA-secure instances below

2−50, and the CCA-security of CCA-secure instances to at least 2128. This

exceeds the CCA-security of most constructions using a 128-bit block cipher

or MAC tag

However, two considerations caused us to adjust the variance. For Baby-

Bear, we decided that between a 128-bit passive lattice attack and a 128-bit

chosen-ciphertext attack (requiring perhaps 2100 chosen messages), the for-

mer is both a much greater threat and much more likely to improve over

time. So we tweaked the parameters to boost lattice security slightly, drop-

ping CCA security to around 2120.

We also were concerned about an adversary using Grover’s algorithm to

speed up chosen-ciphertext attacks. We know that Grover can provide a

small speedup by finding ciphertexts with larger than expected noise. We

have accounted for this in our CCA security estimates, and we expect it

to be the best attack along these lines. But our QROM security analysis

doesn’t rule out a full square-root speedup. In order to hedge our bets, we

slightly reduced the variance of the CCA-secure PapaBear instance, so that

even if there is a square-root speedup it will require 294 effort per key to

break.

25

There are some disadvantages to using so small a variance, such as hybrid

attacks [BGPW16]. But Micciancio-Peikert [MP13] suggests that even bi-

nary noise should be safe so long as the number of LWE samples available

to the adversary is small. In our case the adversary sees only d+1 ring sam-

ples of dimension D, which is at least small enough that no known attacks

apply.

3.3 Primary recommendation

With increasing focus on post-quantum cryptography, we expect lattice and

MLWE cryptanalysis to attract more attention than they did before. The

art of breaking these systems may improve considerably. In addition, integer

MLWE is an entirely new variant of the problem, and might be significantly

easier or harder than polynomial MLWE. So we wanted to be conservative

in our recommendations.

We have estimated the effort to break BabyBear at around 2156 for a classi-

cal computer and 2141 effort for a quantum computer, which makes it a Class

II cryptosystem in NIST’s terminology. But post-quantum cryptography is

currently a field for very conservative users. Since I-MLWE has seen little

analysis, we are not confident enough in BabyBear’s security to make it our

primary recommendation, but it could still be used for lightweight devices.

After a few years of cryptanalysis it might be mature enough.

The stronger MamaBear seems comfortably out of reach of known attacks,

requiring 2242 effort with a classical computer or 2219 effort with a quantum

computer, which would put it in Class IV. This seems sufficiently conserva-

tive, and is our primary recommendation.

PapaBear demonstrates that ThreeBears can reach Class V, and can be

used for applications that require a very high security level.

26

4 Security analysis

4.1 The I-MLWE problem

The I-MLWE problem [Chu17] is to distinguish between two distributions,

which depend on a ring R, dimensions d and e, and a noise distribution χ.

We choose R := Z/NZ and χσ2 as the distribution

d−1∑
i=0

cix
i where xi ←

−1 with probability σ2/2

0 with probability 1− σ2

1 with probability σ2/2

when σ2 ≤ 1/2, and χσ2−1/2 + χ1/2 otherwise. This is the distribution

sampled by noise. Let χdσ2 be the distribution of vectors formed by sampling

χσ2 d times i.i.d. The d×e integer module learning with errors (I-MLWEd×e)

problem is to distinguish the distributions:

(M,Ma+ εa) : M
R← (Z/NZ)e×d; a← χdσ2 ; εa ← χeσ2

(M, b) : M
R← (Z/NZ)e×d; b

R← (Z/NZ)e

We expect the difficulty of this problem to be similar to the traditional

problem over cyclotomic rings.

4.2 The CCA2 transform

Included with this submission is a proof sketch which analyzes Three-

Bears’ CCA2 transform in the quantum random oracle model. It tenta-

tively shows that for a quantum CCA2 adversary A which uses cSHAKE as

a quantum-accessible random oracle, there is a quantum algorithm B using

approximately the same resources as A, such that

AdvIND-CCA2(A) ≤
√

2(q + 1) · (AdvI-MLWE(B)q2/28·encryptionSeedBytes)

+ 2q/
√

28·privateKeyBytes + 4q
√
δ + negl.

where

27

• AdvIND-CCA2(A) is the KEM distinguishing advantage for A.

• AdvI-MLWE(B) is B’s distinguishing advantage for I-MLWE(d+1)×d.

• q is the number of times the adversary calls cSHAKE.

• δ is the failure probability.

Our proof technique doesn’t assume that the decryption queries are clas-

sical, and it doesn’t place any limits other than feasibility on the number

of decryption queries the adversary can make. Thus it uses a relatively

strong attack model, though we haven’t yet attempted to bound batch at-

tacks.

Parsing the bound, the possible attacks on the system appear to be:

• Breaking I-MLWE. Our analysis is loose by a factor of about q for this.

• Grover’s algorithm to discover the private key.

• Grover’s algorithm on the encryption seed; our analysis is loose by a

factor of about q for this.

• Grover’s algorithm to find ciphertexts that are likely to cause failures.

We believe that this attack is much weaker than 4q
√
δ if the decryp-

tion queries are classical, because the attacker cannot recognize such

ciphertexts (except insofar as more noise results in higher probability

of failure).

5 Analysis of known attacks

Here is a more precise analysis of the best known attack strategies.

5.1 Brute force

An attacker could attempt to guess the seeds used in ThreeBears by

brute force. This is infeasible because they are all at least 256 bits long, so

28

a classical attack would take 2256 effort, and a quantum attack would take

2256/maxdepth > 2128 effort. He could mount a classical multi-target key-

recovery attack, but this would take 2320/n time, where the number of target

keys n is likely much less than 264. He could also mount a classical multi-

target attack in 2256/n time on n ciphertexts encrypted with the same public

key. We could prevent this last attack by setting ivBytes to 8 instead of 0,

but we don’t consider this attack a serious threat because it isn’t remotely

feasible, probably can’t be improved, and probably won’t run faster on a

quantum computer.

5.2 Inverting the hash

If the adversary can find preimages for cSHAKE, then he could recover

information about the private key from the matrix seed. However, this

wouldn’t actually yield the whole private key because the matrix seed is 24

bytes and the secret key is 40 bytes, so the adversary would need to find

2128 cSHAKE primages.

5.3 Lattice reduction

The main avenue of cryptanalytic attack against ThreeBears is to recover

the private key using lattice reduction. We analyzed the feasibility of these

attacks using the conservative methodology of NewHope [ADPS15] and

Kyber [BDK+17]. The results for primal attacks are shown in Table 7.

Some instantiations of Ring-LWE over non-cyclotomic rings are much more

vulnerable to dual attacks, because noise which is roughly spherical in the

primal form ends up badly skewed in the dual form [Pei16]. Initial calcu-

lations by Arnab Roy and Hart Montgomery show that for golden Solinas

rings, the map between the primal and dual lattices has singular values in

the range [0.513, 2.176]
√
D. That is, it roughly halves the noise in some

coefficients and doubles it in others. We didn’t finish evaluating the security

against dual attacks in time for the submission deadline. However, it will

29

Classical Quantum

System Lattice Hybrid Lattice Hybrid Class

BabyBear 156 192 141 181 II

BabyBear ephem 168 207 152 194 II

MamaBear 242 247 219 233 IV

MamaBear ephem 263 330 238 311 V

PapaBear 322 329 292 311 V

PapaBear ephem 355 450 322 426 V

Table 7: Log2 difficulty estimates for primal hybrid attack.

be much less problematic than halving the noise in every coefficient, which

would knock 10-15% off our security estimates.

5.4 Multi-target lattice attacks

We expect that lattice reduction attacks don’t batch well, because with high

probability all honestly-generated keys have different matrix seeds.

5.5 Hybrid attack

Because ThreeBears uses less noise than either NewHope or Kyber, we

had the additional concern of a hybrid lattice-reduction / meet-in-the-middle

attack [BGPW16]. We used a script by John Schanck [Sch] to evaluate

the feasibility of this attack using the same difficulty metrics as for the

direct attack. We see that this attack is ineffective, especially when σ2 >

1/2.

5.6 Chosen ciphertext

If an adversary can cause a decryption failure, he may be able to learn some-

thing about the private key. In the CCA-secure version of the system, the

Fujisaki-Okamoto transform [FO99] prevents the adversary from modifying

30

ciphertexts. Instead, he must choose a random seed, and hope that the ci-

phertext causes a failure. This happens with probability less than 2133 for

all recommended instances of ThreeBears.

Not all ciphertexts have the same probability of causing a failure. Rather,

the failure probability pfailure depends on the amount of noise in the ci-

phertext. Since that noise is random, some ciphertexts will have higher

pfailure and some lower. Classically, an adversary can use this property to

decrease the number of queries required, but not the work of formulating

those queries, which is still more than 2133 per failure. In CCA-secure ver-

sions of ThreeBears, sampling the noise includes the public key, so this

effort cannot be re-used across keys.

For the same reason, not all private keys have the same probability of causing

a failure. Distinguishing failure-prone public keys should be as hard as

breaking them, so the adversary can’t use this to his advantage.

A quantum attacker could try to use Grover’s algorithm to find cipher-

texts with higher pfailure. One may show that this raises the expected

failure probability per random-oracle query from mean(pfailure) to at most

root-mean-square(pfailure). We took this into account in Table ??, which is

why the estimated post-quantum CCA attack cost is less the reciprocal of

the failure probability. We consider it unlikely that some quantum attack

could generically cause failures much faster than Grover.

31

CPU Arch flags Keccak asm

Intel Skylake -march=native -mno-adx Haswell Yes

ARM Cortex-A8 -march=native -mthumb ARMv7A No

ARM Cortex-A53 -mcpu=cortex-a53 -DVECLEN=1 generic64 No

Table 8: Compilation settings. We added -mno-adx on Skylake because

ADX breaks valgrind’s memory profiler; -mthumb on Cortex-A8 for space

savings; and -DVECLEN=1 on Cortex-A53 because its NEON unit is slow.

6 Performance Analysis

6.1 Time

ThreeBears key generation and encapsulation both require sampling a

d× d random matrix and multiplying it by a vector. For our N , Karatsuba

multiplication is appropriate [KO62], so these operations take approximately

O(d2 ·(logN)log2 3/b2) time on a CPU with a b-bit multiplier. This is compa-

rable to an RSA encryption with small encryption exponent. Encapsulation

and decapsulation require a d-long vector dot product, which is d times

faster. Additionally, key generation and encapsulation require sampling 2 ·d
and 2 · d+ 1 noise elements, respectively.

We benchmarked our code on several different platforms: Intel Skylake in

Table 9; for ARM Cortex-A53 in Table 10; and for ARM Cortex-A8 in

Table 11. These are intended to represent computers, smartphones, and

embedded devices respectively.

For each platform, we compiled each instance with

clang-5.0 -Os -fomit-frame-pointer -DNDEBUG

and the additional flags shown in Table 8. In all cases we used 2-level

Karatsuba multiplication, and linked the optimized libraries from the Kec-

cak Code Package [BDP+17]. The Skylake implementation uses a small

amount of assembly in the multiplication routine; the other platforms use

no assembly.

32

System CPA-secure CCA-secure

BabyBear 41k 62k 28k 41k 60k 101k

MamaBear 84k 103k 34k 79k 97k 152k

PapaBear 125k 154k 40k 119k 145k 213k

Table 9: Runtime in cycles on an Intel NUC6i5SYH with Core i3-6100U

“Skylake” 64-bit processor at 2.3GHz

System CPA-secure CCA-secure

BabyBear 159k 221k 83k 159k 218k 364k

MamaBear 316k 397k 114k 313k 391k 597k

PapaBear 525k 627k 146k 522k 622k 889k

Table 10: Runtime in cycles on a Raspberry Pi 3 with ARM Cortex-A53

64-bit processor at 1.2GHz

System CPA-secure CCA-secure

BabyBear 342k 495k 175k 341k 491k 802k

MamaBear 722k 933k 254k 716k 921k 1375k

PapaBear 1228k 1497k 323k 1217k 1482k 2075k

Table 11: Runtime in cycles on a BeagleBone Black with ARM Cortex-A8

32-bit processor at 1GHz

We believe that the Skylake and Cortex-A53 code is reasonably close to op-

timal, but maybe careful tuning of the multiplication algorithm could knock

25% off. For Cortex-A8 and other ARMv7 platforms, optimizing the multi-

plication algorithm with NEON should provide a large improvement.

In profiling runs, we found that the FEC added between 0.1% and 2% over-

head. In fact, the more significant overhead from adding FEC is that enables

larger noise, which can result in more iterations in the noise function.

33

System Private key Public key Capsule

BabyBear 40 804 917

MamaBear 40 1194 1307

PapaBear 40 1584 1697

Table 12: ThreeBears object sizes in bytes

Component Skylake Cortex-A53 Cortex-A8

Arithmetic 2212 1920 1444

Melas FEC 645 573 449

cSHAKE 1426 832 856

Main system 3130 2795 2105

Total 7413 6120 4854

Table 13: Code size for MamaBear in bytes.

6.2 Space

Bandwidth and key storage Each field element is serialized into 312 ·
10/8 = 390 bytes. Each instance uses 390 · d + 24 bytes in its public key;

40 bytes in its private key; and 390 · d+ (256 + 18)/2 bytes in its capsules.

This is shown in Table 12.

Code size We measured the total code size on each platform to implement

MamaBear, using the same compilation flags that we used to measure

performance. The code size does not include the Keccak Code Package,

which is dynamically linked. The sizes are shown in Table 13.

Memory usage We measured the stack memory usage of each top-level

function on Skylake using Valgrind’s lackey tool. The memory usage in-

cludes everything in the function’s stack frame, but not input or output. The

measured usage probably depends on shared libraries and stack alignment.

We measured three implementations:

1. The optimized implementation described above.

34

CPA-secure CCA-secure

System Keygen Enc Dec Keygen Enc Dec

Speed-optimized

BabyBear 6200 6616 4216 6200 6648 8184

MamaBear 9112 9528 4632 9112 9560 11512

PapaBear 12856 13272 5048 12856 13304 15672

No vectorization; 1-level Karatsuba

BabyBear 2792 2840 2168 2792 2856 4744

MamaBear 3208 3256 2168 3208 3272 5576

PapaBear 3624 3672 2168 3624 3688 6408

No vectorization; 1-level Karatsuba; re-derive

All instances 2392 2424 2168 2392 2424 3064

Table 14: ThreeBears memory usage bytes on Skylake, excluding input

and output.

2. An implementation without vectorization and with only one level of

Karatsuba. This takes about 1.5× as long per operation.

3. An implementation which re-derives the private key elements ai, bi

instead of remembering them across loop iterations during the matrix

multiply. This takes constant memory, but up to twice the time.

The lower-memory implementations also have slightly less code size. The

results are shown in Table 14. We expect memory usage on a 32-bit platform

to be slightly higher, because our implementation of field elements uses only

26/32 bits instead of 60/64 for easier carry propagation.

35

7 Advantages and limitations

We originally designed ThreeBears because we thought that variants of

RLWE (in this case, I-MLWE) should be studied more before the community

chooses a standard. Our analysis shows that it is quite competitive with its

predecessors Kyber [BDK+17] and Hila5 [Saa17].

7.1 Advantages

Speed ThreeBears shares the advantages of most RLWE and MLWE

systems. Key generation is very fast, so fast that it is typically better to store

the seed instead of the expanded private key. Encryption and decryption

are also very fast, typically significantly faster than elliptic curves.

Size Public keys and ciphertexts are reasonable sizes, about 1.2kB and

1.3kB respectively for MamaBear. This is small enough to be practical

for most Internet-connected systems, but not as small as an isogeny-based

system. Private keys are only 40 bytes. Code sizes are under 10kB plus

Keccak, and stack requirements can be pushed near 3kB plus input and

output.

Hardware support ThreeBears can be used with existing big-integer

software and hardware, which is useful for smart cards and hardware security

modules. This reduces hardware area in systems that must support both

pre-quantum and post-quantum algorithms.

Simplicity ThreeBears has a relatively simple specification, especially

since it doesn’t use the number-theoretic transform. On most platforms,

ThreeBears doesn’t need vectorization to achieve respectable speed. These

advantages mean that its code is small, simple and easy to audit. Forward

error correction adds complexity, but it’s only some 75 lines of C code and

it’s easy to test separately.

36

Efficiency To hedge our new security assumption, we have chosen larger

instances than other RLWE systems. These instances are nonetheless effi-

cient. MamaBear is conjecturally about as strong as Kyber’s “paranoid”

parameter set, while having roughly 15% smaller public keys and cipher-

texts. PapaBear is conjecturally stronger than NewHope and Hila5,

while again having about 15% smaller public keys and ciphertexts.

7.2 Limitations

Novelty ThreeBears doubles down on RLWE’s main disadvantage: the

integer MLWE problem has not been studied as extensively as either plain

LWE or polynomial RLWE. Gu showed that integer and polynomial RLWE

are asymptotically comparable [Chu17], but we aren’t aware of either posi-

tive or negative results for practical parameter sizes.

Noise ThreeBears’ efficiency comes in part from a large dimension and

low noise. This might put it at risk from new hybrid attacks, even though

existing ones are not a threat.

Speed None of the NIST candidates have final code yet, so we cannot test

performance conclusively. ThreeBears’ big-integer arithmetic ought to

make it slower than an NTT-based system, especially on tiny machines and

on machines with vector units. Big-integer arithmetic may also complicate

hardware implementations, at least in hardware that doesn’t support pre-

quantum algorithms. Also, some cryptographers were probably hoping never

to see a carry chain again.

Flexibility ThreeBears can only be used for key encapsulation and en-

cryption. So far there is no I-MLWE signature scheme.

37

7.3 Suitability for constrained environments

ThreeBears is suitable for smart card implementation, and implementors

can reuse their RSA big-number engines, but it may be inefficient on 8-

bit processors without multiprecision arithmetic support. It requires more

RAM and bandwidth than most classical algorithms, but we expect it to be

competitive with other post-quantum algorithms. Its high speed and small

private keys should also help in constrained environments.

8 Absence of backdoors

I, the designer of ThreeBears, faithfully declare that I have not deliber-

ately inserted any hidden weaknesses in the algorithms.

9 Acknowledgments

Thanks to Arnab Roy and Hart Montgomery for their analysis of the ring

shape.

Thanks to Dominique Unruh, Eike Kiltz, Fernando Virdia and Amit Deo

for discussions of the quantum analysis of the CCA transform.

Thanks to Mark Marson for many helpful discussions.

Thanks to Rambus for supporting this work.

38

References

[ADPS15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter

Schwabe. Post-quantum key exchange - a new hope. Cryptol-

ogy ePrint Archive, Report 2015/1092, 2015. http://eprint.

iacr.org/2015/1092.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter

Schwabe. NewHope without reconciliation. Cryptology ePrint

Archive, Report 2016/1157, 2016. http://eprint.iacr.org/

2016/1157.

[BDK+17] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien

Stehlé. CRYSTALS – kyber: a CCA-secure module-lattice-

based KEM. Cryptology ePrint Archive, Report 2017/634,

2017. http://eprint.iacr.org/2017/634.

[BDP+17] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van

Assche, Ronny Van Keer, and Vladimir Sedach. Kec-

cak code package, 2017. https://github.com/gvanas/

KeccakCodePackage.

[BGPW16] Johannes A. Buchmann, Florian Göpfert, Rachel Player, and

Thomas Wunderer. On the hardness of LWE with binary er-

ror: Revisiting the hybrid lattice-reduction and meet-in-the-

middle attack. In David Pointcheval, Abderrahmane Nitaj,

and Tajjeeddine Rachidi, editors, AFRICACRYPT 16, volume

9646 of LNCS, pages 24–43. Springer, Heidelberg, April 2016.

doi:10.1007/978-3-319-31517-1_2.

[Chu17] Gu Chunsheng. Integer version of ring-LWE and its appli-

cations. Cryptology ePrint Archive, Report 2017/641, 2017.

http://eprint.iacr.org/2017/641.

39

http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2017/634
https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage
http://dx.doi.org/10.1007/978-3-319-31517-1_2
http://eprint.iacr.org/2017/641

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably

secure key exchange scheme based on the learning with errors

problem. Cryptology ePrint Archive, Report 2012/688, 2012.

http://eprint.iacr.org/2012/688.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of

asymmetric and symmetric encryption schemes. In Michael J.

Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages

537–554. Springer, Heidelberg, August 1999.

[Ham15] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. Cryp-

tology ePrint Archive, Report 2015/625, 2015. http://

eprint.iacr.org/2015/625.

[HGNP+03] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval,

John Proos, Joseph H. Silverman, Ari Singer, and William

Whyte. The impact of decryption failures on the security of

NTRU encryption. In Dan Boneh, editor, CRYPTO 2003, vol-

ume 2729 of LNCS, pages 226–246. Springer, Heidelberg, Au-

gust 2003.

[JZC+17] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and

Zhi Ma. Post-quantum ind-cca-secure kem without additional

hash. Cryptology ePrint Archive, Report 2017/1096, 2017.

https://eprint.iacr.org/2017/1096.

[KjCP16] John Kelsey, Shu jen Chang, and Ray Perlner. SHA-3 de-

rived functions: cSHAKE, KMAC, TupleHash and Parallel-

Hash, 2016. https://doi.org/10.6028/NIST.SP.800-185.

[KO62] A Karabutsa and Yu Ofman. Multiplication of many-digital

numbers by automatic computers. Doklady Akademii Nauk

SSSR, 145(2):293, 1962.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal

lattices and learning with errors over rings. In Henri Gilbert,

40

http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2015/625
http://eprint.iacr.org/2015/625
https://eprint.iacr.org/2017/1096
https://doi.org/10.6028/NIST.SP.800-185

editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23.

Springer, Heidelberg, May 2010.

[LW87] Gilles Lachaud and Jacques Wolfmann. Sommes de klooster-

man, courbes elliptiques et codes cycliques en caractéristique

2. CR Acad. Sci. Paris Sér. I Math, 305(20):881–883, 1987.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and

LWE with small parameters. In Ran Canetti and Juan A.

Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,

pages 21–39. Springer, Heidelberg, August 2013. doi:10.

1007/978-3-642-40041-4_2.

[Pei16] Chris Peikert. How (not) to instantiate ring-LWE. Cryptology

ePrint Archive, Report 2016/351, 2016. http://eprint.iacr.

org/2016/351.

[Saa16] Markku-Juhani O. Saarinen. Ring-LWE ciphertext compres-

sion and error correction: Tools for lightweight post-quantum

cryptography. Cryptology ePrint Archive, Report 2016/1058,

2016. http://eprint.iacr.org/2016/1058.

[Saa17] Markku-Juhani O. Saarinen. On reliability, reconciliation, and

error correction in ring-LWE encryption. Cryptology ePrint

Archive, Report 2017/424, 2017. http://eprint.iacr.org/

2017/424.

[Sch] John Schanck. LWE hybrid attack scripts. Personal communi-

cation.

[SXY17] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa.

Tightly-secure key-encapsulation mechanism in the quantum

random oracle model. Cryptology ePrint Archive, Report

2017/1005, 2017. http://eprint.iacr.org/2017/1005.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum

security of the fujisaki-okamoto and OAEP transforms. In Mar-

tin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, vol-

41

http://dx.doi.org/10.1007/978-3-642-40041-4_2
http://dx.doi.org/10.1007/978-3-642-40041-4_2
http://eprint.iacr.org/2016/351
http://eprint.iacr.org/2016/351
http://eprint.iacr.org/2016/1058
http://eprint.iacr.org/2017/424
http://eprint.iacr.org/2017/424
http://eprint.iacr.org/2017/1005

ume 9986 of LNCS, pages 192–216. Springer, Heidelberg, Octo-

ber / November 2016. doi:10.1007/978-3-662-53644-5_8.

42

http://dx.doi.org/10.1007/978-3-662-53644-5_8

A Intellectual property statements

This appendix is a LATEX rendering of the intellectual property statements

we mailed to NIST.

A.1 Statement by Each Submitter

I, Michael Hamburg, of 425 Market St 11th Floor, San Francisco CA 94105,

do hereby declare that the cryptosystem, reference implementation, or opti-

mized implementations that I have submitted, known as ThreeBears, is my

own original work, or if submitted jointly with others, is the original work

of the joint submitters.

I further declare that:

• I do not hold and do not intend to hold any patent or patent application

with a claim which may cover the cryptosystem, reference implemen-

tation, or optimized implementations that I have submitted, known as

ThreeBears).

I do hereby acknowledge and agree that my submitted cryptosystem will be

provided to the public for review and will be evaluated by NIST, and that

it might not be selected for standardization by NIST. I further acknowledge

that I will not receive financial or other compensation from the U.S. Gov-

ernment for my submission. I certify that, to the best of my knowledge,

I have fully disclosed all patents and patent applications which may cover

my cryptosystem, reference implementation or optimized implementations.

I also acknowledge and agree that the U.S. Government may, during the

public review and the evaluation process, and, if my submitted cryptosystem

is selected for standardization, during the lifetime of the standard, modify

my submitted cryptosystem?s specifications (e.g., to protect against a newly

discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and

proceed to publish the draft standards for public comment

43

I do hereby agree to provide the statements required by Sections 2.D.2 and

2.D.3 in the Call For Proposals for any patent or patent application identi-

fied to cover the practice of my cryptosystem, reference implementation or

optimized implementations and the right to use such implementations for

the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process,

NIST may remove my cryptosystem from consideration for standardization.

If my cryptosystem (or the derived cryptosystem) is removed from considera-

tion for standardization or withdrawn from consideration by all submitter(s)

and owner(s), I understand that rights granted and assurances made under

Sections 2.D.1, 2.D.2 and 2.D.3 of the Call For Proposals, including use

rights of the reference and optimized implementations, may be withdrawn by

the submitter(s) and owner(s), as appropriate.

Signed: [in the mailed version]

Title: Senior Principal Engineer

Date: Sept 22, 2017

Place: San Francisco, CA

44

A.2 Statement by Reference/Optimized Implementations?

Owner

I, Martin Scott, 425 Market St 11th Floor, San Francisco CA 94105, am the

owner or authorized representative of the owner (Rambus Inc.) of the sub-

mitted reference implementation and optimized implementations and hereby

grant the U.S. Government and any interested party the right to reproduce,

prepare derivative works based upon, distribute copies of, and display such

implementations for the purposes of the post-quantum algorithm public re-

view and evaluation process, and implementation if the corresponding cryp-

tosystem is selected for standardization and as a standard, notwithstanding

that the implementations may be copyrighted or copyrightable.

Signed: [in the mailed version]

Title: Senior Vice President / General Manager

Date: Sept 22, 2017

Place: San Francisco, CA

45

	Introduction
	System overview

	Specification
	Notation
	Encoding
	Parameters
	Common subroutines
	Hash functions
	Sampling
	Extracting bits from a number
	Forward error correction

	Keypair generation
	Encapsulation
	Decapsulation

	Design Rationale
	Integer MLWE problem
	Parameter choices
	Primary recommendation

	Security analysis
	The I-MLWE problem
	The CCA2 transform

	Analysis of known attacks
	Brute force
	Inverting the hash
	Lattice reduction
	Multi-target lattice attacks
	Hybrid attack
	Chosen ciphertext

	Performance Analysis
	Time
	Space

	Advantages and limitations
	Advantages
	Limitations
	Suitability for constrained environments

	Absence of backdoors
	Acknowledgments
	Intellectual property statements
	Statement by Each Submitter
	Statement by Reference/Optimized Implementations? Owner

