
Post-quantum cryptography proposal:

ThreeBears

Inventor, developer and submitter

Mike Hamburg

Rambus Cryptography Products Group

E-mail: mhamburg@rambus.com

Telephone: +1-415-390-4344

425 Market St, 11th floor

San Francisco, California 94105

United States

Owner

Rambus, Inc.

Telephone: +1-408-462-8000

1050 Enterprise Way, Suite 700

Sunnyvale, California 94089

United States

July 25, 2019



Contents

0 Changelog 4

0.1 Second-round tweaks . . . . . . . . . . . . . . . . . . . . . . . 5

0.2 Typo corrections . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Introduction 7

1.1 Module Learning With Errors . . . . . . . . . . . . . . . . . . 7

1.2 Polynomial and Integer MLWE . . . . . . . . . . . . . . . . . 9

1.3 Practical details . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Specification 14

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Common subroutines . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Hash functions . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Extracting bits from a number . . . . . . . . . . . . . 21

2.4.4 Forward error correction . . . . . . . . . . . . . . . . . 21

2.5 Keypair generation . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Decapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Implicit rejection . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Design Rationale 29

3.1 Integer MLWE problem . . . . . . . . . . . . . . . . . . . . . 29

3.2 Parameter choices . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Primary recommendation . . . . . . . . . . . . . . . . . . . . 35

4 Security analysis 37

4.1 The I-MLWE problem . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The CCA transform . . . . . . . . . . . . . . . . . . . . . . . 37

5 Analysis of known attacks 39

2



5.1 Brute force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Inverting the hash . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Lattice reduction . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Hybrid attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Quantum Ideal-SVP or DCP algorithm . . . . . . . . . . . . 41

5.6 Chosen ciphertext . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 Malleability and kleptography . . . . . . . . . . . . . . . . . . 42

6 Performance Analysis 44

6.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Advantages and limitations 49

7.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Suitability for constrained environments . . . . . . . . . . . . 50

8 Absence of backdoors 51

9 Acknowledgments 51

A Intellectual property statements 58

A.1 Statement by Each Submitter . . . . . . . . . . . . . . . . . . 58

A.2 Statement by Reference/Optimized Implementations’ Owner 60

3



0 Changelog

This second-round submission differs from the first-round submission in sev-

eral ways:

• We have added second-round tweaks.

• We corrected typos, and improved the exposition of the scheme.

• We added benchmarks on Cortex-M4. We updated the rest of the

benchmarks as well, with negligible changes.

• We updated the proof sketch to a formal proof of security, to be found

in the file proof.pdf.

• We added a study of decryption failure rates for systems with error-

correcting codes, to be found in the file failure.pdf.

After the second round, we have made additional changes:

• We have made implicit rejection mandatory.

• We have increased the PRF key for implicit rejection to 40 bytes, the

same size as the private seed. This gives the same multi-target security

for the PRF as for the main system. Since this only affects rejected

ciphertexts, it doesn’t meaningfully affect compatibility. So we chose

not to increase the version number this change.

• We have updated the benchmarks, which are roughly 10% slower for

CCA decapsulation due to implicit rejection (except on Cortex-M4,

where they are offset by improvements in the PQM4 project).

• Due to implicit rejection, the proof of security is mostly obsoleted by

[BHHP19], except for the multi-key cases.

• We have added a toy system, GummyBear, which is extremely weak

and intended to be broken in practice. After initially posting this with

D = 80, which is too weak to be interesting, we changed it to D = 120.

4



• We have added two toy systems, Koala and KoalaEphem, which

approximate what ThreeBears might look like in a lightweight con-

text. We also fixed a typo: these systems have 645-byte capsules, not

657 bytes.

0.1 Second-round tweaks

Lower failure probability We slightly reduced the noise (and lattice se-

curity) in CCA instances, to greatly reduce the probability of decryption

failure. We are unaware of any attacks on the 2−140-ish failure probabil-

ity in the original submission, but we would like to rule out attacks more

conclusively. This changed the security estimates. We also changed these

estimates due to a revised version of Schanck’s security estimator [Sch].

For the CCA-secure schemes, we also changed the method used to estimate

failure probability, so that it is more conservative. This reduces the risk

of a design mistake. We detailed the failure analysis in the failure.pdf

document in this submission package.

We have also reduced the noise and failure probability for the alternative

parameter sets, but we didn’t estimate their security using the newer failure

estimator. This is because the alternative parameter sets use different error-

correction schemes (generally either no error correction or parity), so the

modifications made in the estimator don’t apply.

Implicit rejection The second-round system used an optional implicit

rejection mode. Revision 2 changes to full implicit rejection.

0.2 Typo corrections

We corrected several typos for the second-round version.

• In the first-round submission, Table 2 specified PapaBear with d = 3.

It should use d = 4. Thanks to Fernando Virdia for pointing this out.

5



• In Algorithm 1 (noise), “for j = 0 to d” has been corrected to “for

j = 0 to D − 1”.

• In Algorithm 6 (Encapsulate), the first-round spec had some noise

calls operating on seed, and some on matrixSeed||seed||iv. This has

been corrected to always use the latter.

• In Algorithm 7 (Decapsulate), the first-round spec had an extra term

noise2(seed) copy-pasted from Encapsulate. This has been removed.

• In the first-round version, we used extract4 resp. extract5 instead of

the correct extract` resp. extract`+1. This was still correct for the

recommended parameters, which all have ` = 4.

6



1 Introduction

This is the specification of the ThreeBears post-quantum key encapsula-

tion mechanism.

ThreeBears is based on the Lyubashevsky-Peikert-Regev [LPR10] and

Ding [DXL12] ring learning with errors (RLWE) cryptosystems. More di-

rectly, it is based on Alkim et. al’s NewHope [ADPS15] and Bos et. al’s

Kyber [BDK+17], the latter being based on the module learning with er-

rors (MLWE). We replaced the polynomial ring underlying this module with

the integers modulo a generalized Mersenne number, thereby making it in-

teger module learning with errors (I-MLWE), as in Gu’s work [Chu17]. We

also use forward error correction, like Saarinen’s trunc8 and Hila5 [Saa16,

Saa17].

ThreeBears’ name comes from the fact that its modulus has the same

“golden-ratio Solinas” shape as Ed448-Goldilocks [Ham15], and indeed some

of the arithmetic code in its implementation is derived from Goldilocks’

arithmetic code.

One of our goals with ThreeBears is to encourage exploration of poten-

tially desirable but less conventional designs. This is why ThreeBears

uses I-MLWE instead of MLWE; why the private key as only a seed; why

we use originally used explicit rejection; and why we don’t use a plaintext-

confirmation hash.

1.1 Module Learning With Errors

At a high level, ThreeBears is based on [LPR10], and more directly on

Kyber [BDK+17], with other improvements found in [DXL12, ADPS16].

The message flow and overall design my be regarded as a variant of ElGamal

encryption [ElG84], shown in Figure 1, which computes a shared secret abG,

where a is Alice’s secret, b is Bob’s secret, and G is a generator of some finite

cyclic group. Unfortunately, ElGamal encryption using scalar multiplication

7



on a cyclic group will not resist quantum attack, because it can be broken

by Shor’s algorithm.

A tempting alternative is to use some other commutative or associative

operation, such as “ElGamal with matrices”, in which the shared secret is

b> · M · a. This is shown in Figure 2, and can be instantiated with any

ring R and dimension d. Matrix ElGamal is insecure even against classical

attack, because it is easy to compute a (up to coset) from M · a. However,

if a small amount of noise ea is added, then depending on R and d, it may

be much more difficult to recover a, or even distinguish M · a + e from a

random vector. This is called the “Module Learning with Errors” (MLWE)

problem, which is defined as follows:

Definition 1 (MLWE). Let R be a finite ring. Let χ be a probability distri-

bution over R. Let d1 and d2 be positive integers. The (R,χ, d1, d2)-MLWE

problem is to distinguish the MLWE distribution

D1 := {(M,Ma+ e) : M
R← Rd1×d2 , a← χd1 , e← χd2}

from the uniform distribution

D0 := {(M, r) : M
R← Rd1×d2 , r

R← Rd2}

Adding noise turns the insecure Matrix ElGamal scheme into the encryption

scheme shown in Figure 3; this is roughly [LPR10] plus the generalization

from rings (d = 1) to modules (d ≥ 1) from [ADPS16]. Because of the

noise, Alice and Bob don’t quite agree on the shared secret b>Ma; rather

Alice computes b>Ma + e>b a whereas Bob computes b>Ma + b>ea + e′.

If (a, b, ea, eb, e
′) are small enough, this difference can be reconciled: Bob

encodes his message so that different messages encode to values that are far

apart, and Alice decodes by rounding, in some manner that encode(m) +

b>ea + e′ − e>b a probably rounds to m.

The noisy matrix ElGamal scheme is easily seen to be secure against passive

attack if the (R,χ, d, d + 1)-MLWE problem is difficult. The public key

is simply a (R,χ, d, d)-MLWE sample, so the adversary will not notice if

8



it is replaced by a uniformly random (M,A). Once this has been done,

(b>M + eb, b
>A+ e′) is the transpose of a (R,χ, d, d+ 1)-MLWE sample, so

again the adversary will not notice if it is replaced by a uniformly random

value. At that point, the message is blinded by a uniformly random ring

element, so it gives no information about the message. See proof.pdf for a

more formal analysis.

1.2 Polynomial and Integer MLWE

It remains to choose R, χ, d and the encoding and rounding algorithms.

Most systems use Polynomial Ring or Module LWE, meaning that R is

chosen as the polynomial ring (Z/q)[x]/φ(x), where q is an integer on the

order of 28 up to 216, and φ(x) is a sparse polynomial — typically either a

prime cyclotomic or a power-of-2 cyclotomic. Let D be the degree of φ. The

distribution χ chooses each of the D coefficients of its output independently

from some distribution χ1 over Z/q. That is:

χ :=

{
D−1∑
i=0

ci · xi : ci
iid← χ1

}

The distribution χ1 is usually either a discretized Gaussian distribution,

a binomial distribution or a fixed distribution on {−1, 0, 1}. A message

m = JmiKk−1i=0 is encoded as

encode(m) := bq/2c ·
k−1∑
i=0

mi · xi

To decode an encoded message Z, write Z :=
∑D−1

i=0 zi · ci, and set mi = 1

if zi ∈ [q/4, 3q/4] and mi = 0 otherwise.

Instead of Polynomial MLWE, ThreeBears uses Integer MLWE (I-MLWE),

as defined by Gu [Chu17], who proved that I-RLWE and P-RLWE have

asymptotically similar security. I-MLWE is the case of MLWE, where in-

stead of reducing each coefficient of the polynomial mod q, instead we reduce

it by setting x = q. This makes the ring isomorphic to Z/N , where N = φ(q)

9



Alice Bob

A
a
R← Z/q

A← aG

(B,C)

b← Z/q

B ← bG

C ← m+ bAm← C − aB

Figure 1: Pre-quantum ElGamal encryption over a group generated by G

Alice Bob

(M,A = Ma)

M
R← Rd×d

a
R← Rd

A←Ma

(B,C)

b
R← Rd

B ← b>M

C ← m+ b>Am← C −Ba

Figure 2: Insecure ElGamal encryption with matrices over a ring R.

Alice Bob

(M,A←Ma+ ea)
M

R← Rd×d

a, ea
R← χd, χd

(B,C)

b, eb, e
′ R← χd, χd, χ

B ← b>M + e>b

menc ← encode(m)

C ← menc + b>A+ e′k ← round(C−Ba)

Figure 3: Simplified Module Learning With Errors encryption over a ring

R and noise distribution χ. This follows [BDK+17], which in turn is based

on [LPR10] (which uses d = 1, i.e. Ring-LWE).

10



is a generalized Mersenne number. The noise, encoding and decoding func-

tions for polynomial LWE still work, with the substitution x = q. Three-

Bears follows this pattern with some small variations, taking x = q = 210

and φ(x) = x312−x156−1. See Section 3.2 for why we didn’t use a cyclotomic

polynomial.

1.3 Practical details

The simplified MLWE encryption system shown in Figure 3 works fine in

theory, but it is much more secure and efficient with some practical improve-

ments.

Key encapsulation Of course, we do not actually encrypt a long message

with this scheme. Instead, a short (256-bit) message m is chosen at random,

and is used to derive a session key k for some symmetric encryption algo-

rithm. So we are building a Key Encapsulation Mechanism (KEM) rather

than a true encryption scheme.

Round C It is inefficient to send the entire ciphertext C: it will be rounded

when Alice uses it, and she only needs as many coefficients as there are

ciphertext digits. Therefore it is better to send only the digits of C that

Alice needs, and only a few bits of each digit.

Clarifier When multiplying two numbers mod N , the product contains

terms with significance greater than x3D/2. Reducing this value mod φ(x) =

xD − xD/2 − 1 requires two reduction steps: first to xD + xD/2 and then to

2 · xD/2 + 1. This double-reduction distorts and amplifies the noise which is

added to the message, which increases the probability of decryption failure.

We could instead use Montgomery multiplication montmul(a, b) := a · b/xD,

but this would have the same effect on the least-significant digits. It is better

11



to use an operation halfway between normal and Montgomery multiplica-

tion, namely:

a ∗ b := a · b/xD/2 mod N

= a · b · (xD/2 − 1) mod N

The ring Z/N is still a ring (and if N is prime, a field) with the operations

(+, ∗) instead of (+, ·). We call the value xD/2 − 1 a clarifier because it

reduces distortion of the noise. Because the clarifier has a special form, it

is efficient to compute a ∗ b directly, rather than using two multiplications.

Even with the clarifier, there is still more noise in the digits near xD/2, so

the digits used for encryption are the ones farthest from xD/2.

Private key as seed Alice’s keys can easily be created pseudorandomly

from a small seed. We define explicitly how to do this, so that the seed func-

tions as a private key. This makes private keys easier to store. If Three-

Bears becomes a standard, it may be preferable to allow other methods of

key expansion that produce the same distribution, in case they should be

superior for some property like side-channel resistance.

Matrix as seed Alice’s public key includes a large matrix M , which is

expanded pseudorandomly from a seed. There’s no need to actually send

M . Instead, ThreeBears generates M from a small (24-byte) derived seed,

and sends that seed instead of M .

Fujisaki-Okamoto transform As described above, our MLWE encryp-

tion system would be secure against passive attack but not against a chosen-

ciphertext attack [HNP+03]. The standard defense is to use a KEM variant

of the Fujisaki-Okamoto transform [FO99]. In this transform, instead of

choosing his randomness (b, eb, e
′) at random, Bob generates them deter-

ministically by hashing the public key and m; so the entire ciphertext is

a deterministic function of the public key and m. After Alice recovers m

12



she can check that encryption was performed properly. If not, then she re-

jects the ciphertext as invalid. We specify variants of ThreeBears with

Fujisaki-Okamoto (for public-key encryption) and without it (for ephemeral

key exchange).

Error-correcting code Like most LPR10-based encryption algorithms,

ThreeBears is not perfectly correct: there is a small chance that the noise

may exceed the rounding threshold and decryption may fail. For Fujisaki-

Okamoto to work, this failure probability must be cryptographically negli-

gible. To reduce the failure probability for a given noise level, we apply a

forward error-correcting code to m. There are many options for such a code.

We chose a Melas-type BCH code that corrects 2 errors, since this affords a

decent security increase and is easy to perform in constant time.

13



2 Specification

Here is the detailed specification of ThreeBears.

2.1 Notation

Integers Let Z denote the integers, and Z/N the ring of integers modulo

some integer N . For an element x ∈ Z/N , let res(x) be its value as an

integer in {0, . . . , N − 1}.

For a real number r, brc (“floor of r”) is the greatest integer ≤ r; dre
(“ceiling of r”) is the least integer ≥ r; and bre := br+ 1/2c is the rounding

of r to the nearest integer, with half rounding up.

Sequences Let Tn denote the set of sequences of n elements each of type

T . We use the notation Ja, b, . . . , zK or JSiKn−1i=0 for such a sequence. If S is

a sequence of n elements and 0 ≤ i < n, then Si is its ith element.

We describe our error-correcting code in terms of bit-sequences, i.e. elements

of {0, 1}n. Let a ⊕ b be the bitwise exclusive-or of two bit-sequences. If

a and b aren’t the same length, we zero-pad the shorter sequence to the

length of the longer one. We use the notation
⊕
S for the ⊕-sum of many

sequences.

2.2 Encoding

Let B denote the set of bytes, i.e. {0, . . . , 255}.

Public keys, private keys and capsules are stored and transmitted as fixed-

length sequences of bytes. That is, as elements of Bn for some n which

depends on system parameters. To avoid filling the specification with con-

catenation and indexing, we will define common encodings here.

The encodings used in ThreeBears are pervasively little-endian and fixed-

length. That is, when converting between a sequence of smaller numbers

14



(bits, bytes, nibbles...) and a larger number, the first (or rather, 0th) element

is always the least significant. Also, the number of elements in a sequence

is always fixed by its type and the parameter set, so we never strip zeros or

use length padding.

An element z of Z/N is encoded as a little-endian byte sequence B of length

bytelength(N) := dlog256Ne, such that

bytelength(N)−1∑
i=0

Bi · 256i = res(z)

To decode, we simply compute Bi · 256i mod N without checking that the

encoded residue is less than N . This encoding is malleable, but capsules in

our CCA-secure scheme are not malleable.

ThreeBears’ encapsulated keys contain a sequence of 4-bit nibbles, i.e.

elements of {0, . . . , 15}. We encode this sequence by packing two nibbles

into a byte1 in little-endian order. So a nibble sequence JsK encodes as

Js2·i + 16 · s2·i+1K
dlength(s)/2e
i=0

We will mention explicitly what part of the capsule is encoded as nib-

bles.

The same little-endian rules apply for converting between bit sequences and

byte sequences. Any other tuple, vector or sequence of items is encoded as

the concatenation of the byte encodings of those items.

2.3 Parameters

An instance of ThreeBears has many parameters. About half of these are

lengths of various seeds, which are fixed according to security requirements.

The list is shown in Table 1. These parameters are in scope in every function

in this specification. For example, when we refer to d, we mean the d-

parameter in the current parameter set.

1These sequences always have even length, but if they didn’t then the last nibble would

be encoded in its own byte.

15



Description Name Value

Independent parameters:

Specification version version 1

Private key bytes privateKeyBytes 40

Matrix seed bytes matrixSeedBytes 24

Encryption seed bytes encSeedBytes 32

Initialization vector bytes ivBytes 0

Shared secret bytes sharedSecretBytes 32

Bits per digit lgx 10

Ring dimension D 312

Module dimension d varies: 2 to 4

Noise variance σ2 varies: 1
4 to 1

Encryption rounding precision ` 4

Forward error correction bits fecBits 18

CCA security cca varies: 0 or 1

Derived parameters:

Radix x 2lgx

Modulus N xD − xD/2 − 1

Clarifier clar xD/2 − 1

Table 1: ThreeBears global parameters

16



The parameters for the recommended instances are shown in Table 2. Each

system has variants for CPA-secure and CCA-secure key exchange. Our

primary recommendation is MamaBear. For each system, we estimated the

failure probability, the difficulty of attacking the mode with lattice attacks,

and (for CCA-secure variants) the difficulty of a chosen-ciphertext attack

with a quantum computer. See Section 5 for a detailed analysis.

We also define five sets of toy parameters, shown in Table 3. TeddyBear

is simply too small: it has dimension 1 · 240 compared to BabyBear’s

2 · 312. This system has a core-sieve difficulty of 260, but core-sieve is an

underestimate and TeddyBear exceeds the LWE challenges that have been

solved so far. In order to make a challenge that might actually be broken,

we propose the even smaller GummyBear, which also features a non-prime

N . In the opposite direction, DropBear should be secure against CPA

attacks, but its failure rate of around 1.1% makes it vulnerable to CCA

attacks. This should make it much easier to break than TeddyBear in

practice.

Finally, Koala is a candidate for lightweight use. Since it might eventually

be implemented, we specify that it has

privateKeyBytes = encryptionSeedBytes = 24

and matrixSeedBytes=16, which gives it a public key of 556 bytes and a

capsule of 645 bytes.

2.4 Common subroutines

2.4.1 Hash functions

In order to make sure that the hash functions called by instances of Three-

Bears are all distinct, they are prefixed with a parameter block pblock.

This is formed by concatenating the independent parameters listed in Ta-

ble 1, using one byte per parameter with the following exceptions. D is

greater than 256, so it is encoded as two bytes (little-endian); and σ2 is a

17



Lattice security

System d cca σ2 Failure Classical Quantum Class

BabyBear 2
0 1 ≈ 2−58 168 153 II

1 9/16 < 2−156 154 140 II

MamaBear 3
0 7/8 ≈ 2−51 262 238 V

1 13/32 < 2−206 235 213 IV

PapaBear 4
0 3/4 ≈ 2−52 351 318 V

1 5/16 < 2−256 314 280 V

Table 2: ThreeBears recommended parameters. Security levels are given

as the log2 of the estimated work to break the system using a lattice or

chosen-ciphertext attack on a quantum computer.

System lgx D d cca σ2 Failure Security

GummyBear 9 120 1 0 1 ≈ 2−62 21

TeddyBear 9 240 1 1 3/4 ≈ 2−58 60

DropBear 10 312 2 1 2 ≈ 2−6 184

Koala 9 240 2 1 11/32 ≈ 2−130 115

KoalaEphem 9 240 2 0 21/32 ≈ 2−42 128

Table 3: ThreeBears toy parameters. “Security” is classical core-sieve.

18



real number where 0 < σ2 ≤ 2, so it is encoded as 128 · σ2 − 1. The total

size of the parameter block is 14 bytes.

As an example, the parameter block for MamaBear in CCA-secure mode

is

J1, 40, 24, 32, 0, 32, 10, 56, 1, 3, 51, 4, 18, 1K

Since there are multiple uses of the hash function within ThreeBears, we

also separate them with a 1-byte “purpose” p. For word-alignment purposes,

we add a zero byte between the parameter block and the purpose. The hash

function is therefore

Hp(data, L) := cSHAKE256(pblock || J0, pK || data, 8·L, “”, “ThreeBears”)

Here L is the length in bytes of the desired output. The cSHAKE256 hash

function is defined in [KjCP16]. We use only one personalization string to

avoid polluting the cSHAKE namespace, and to enable precomputation of the

first hash block.

2.4.2 Sampling

Uniform We construct the d × d matrix M by sampling each element

separately. We do this with a function that expand a short seed, and co-

ordinates 0 ≤ i, j < d, into a uniform sample mod N . This is shown in

Algorithm 1.

Noise We will also need to sample noise modulo N from a distribution

whose “digits” are small, of variance σ2. The noise sampler is shown in

Algorithm 1. It works by expanding a seed to one byte per digit, and then

converting the digit to an integer with the right variance. With only one

byte per digit we can only sample distributions with certain variances, as

described in that algorithm’s requirements.

19



Algorithm 1: Uniform and noise samplers

Function uniform(seed, i, j) is
input : Seed of length matrixSeedBytes bytes; i and j in [0 .. d− 1]

output : Uniformly pseudorandom number modulo N

B ← H0(seed || Jd · j + iK, bytelength(N));

return B decoded as an element of Z/N ;

end

Function noisep(seed, i) is
input : Purpose p; seed whose length depends on purpose; index i

require: σ2 must be either


in [0..12 ] and divisible by 1

128

in [12 ..1] and divisible by 1
32

in [1..32 ] and divisible by 1
8

exactly 2

output : Noise sample modulo N

B ← Hp(seed || JiK, D);

for j = 0 to D − 1 do

// Convert each byte to a digit with var σ2

sample← Bj ;

digitj ← 0;

for k = 0 to d2 · σ2e − 1 do

v ← 64 ·min(1, 2σ2 − k);

digitj ← digitj +
⌊
sample+v

256

⌋
+
⌊
sample−v

256

⌋
;

sample← sample · 4 mod 256;

end

end

return
D−1∑
j=0

digitj · xj mod N

end

20



2.4.3 Extracting bits from a number

In order to encrypt using ThreeBears, we need to extract bits from an

approximate shared secret S mod N . Because our ring isn’t cyclotomic, the

digits of S don’t all have the same noise: the lowest and highest bits have

the least noise, and the middle ones have the most. We define a function

extractb(S, i) which returns the top b bits from the coefficient with the

ith-least noise, as shown in Algorithm 2.

Algorithm 2: Extracting the top b bits of the digit with the ith-least noise

Function extractb(S, i) is

if i is even then j ← i/2;

else j ← D − (i+ 1)/2;

return
⌊
res(S) · 2b/xj+1

⌋
;

end

2.4.4 Forward error correction

ThreeBears uses forward error correction (FEC). Let FecEncodeb and

FecDecodeb implement an error-correcting encoder and decoder, respec-

tively, where the decoder appends b = fecBits bits of error correction

informatioon. Because b might not be a multiple of 8, and because the

output of the FEC is encrypted on a bit-by-bit basis, we specify that the

encoder and decoder operate on bit sequences. If fecBits = 0, then no

error correction is used:

FecEncode0(s) = FecDecode0(s) = s

The rest of this section describes a Melas FEC encoder and decoder which

add 18 bits and correct up to 2 errors, roughly as in [LW87]. This FEC is

used by all our recommended parameters.

21



Encoding Let seqb(n) be the b-bit sequence of the bits of an integer n, in

little-endian order. For a bit a and sequence B, let

a ·B := Ja ·BiKlength(B)−1
i=0

For bit-sequences R and s of length b+ 1 and b respectively, let

step(R, s) := J(s⊕ (s0 ·R))iKbi=1

Let stepi(R, s) denote the ith iterate of step(R, ·) applied to s. Then

FecEncode18 appends an 18-bit syndrome as shown in Algorithm 3.

Algorithm 3: Melas FEC encode

Function syndrome18(B) is
input : Bit sequence of length n

output: Syndrome, a bit sequence of length 18.

P ← seq18+1(0x46231);

s← 0;

for i = 0 to n− 1 do s← step(P, s⊕ JBiK);
return s;

end

Function FecEncode18(B) is
return B || syndrome18(B)

end

Decoding Decoding is more complicated, because to locate two errors

we must solve a quadratic equation. Let Q := seq9+1(0x211). For 9-bit

sequences a and b, define the 9-bit sequence

a� b :=
8⊕
i=0

(
b8−i · stepi(Q, a)

)
The operations ⊕ and � define a field with 29 elements, with additive iden-

tity 0 and multiplicative identity seq9(0x100). That is, � is Montgomery

multiplication. Define a�n as the nth power of a under�-multiplication.

The rest of the decoding algorithm is shown in Algorithm 4.

22



Algorithm 4: Melas FEC decode

Function FecDecode18(B) is
input : Encoded bit sequence B of length n, where 18 ≤ n ≤ 511

output: Decoded bit sequence of length n− 18

// Form a quadratic equation from syndrome.

s← syndrome18(B);

Q← seq9+1(0x211);

c← step9(Q, s)� step9(Q, reverse(s));

r ← step17
(
Q, c�510

)
;

s0 ← step511−n(Q, s);

// Solve quadratic for error locators using half-trace

halfTraceTable← J36, 10, 43, 215, 52, 11, 116, 244, 0K;
halfTrace←

⊕8
i=0 (ri · seq9(halfTraceTablei));

(e0, e1)← (s0 � halfTrace, (s0 � halfTrace)⊕ s0));

// Correct the errors using the locators

for i = 0 to n− 18− 1 do

if stepi(Q, e0) = seq9(1) or stepi(Q, e1) = seq9(1) then

Bi ← Bi ⊕ 1;

end

end

return JBiKn−18−1i=0 ;

end

23



Implementation This specification admits many optimizations. See the

melas fec.c from the Optimized Implementation for a fast, short, constant-

time implementation of the Melas FEC.

2.5 Keypair generation

We define key generation so that the private key is a uniformly random

byte string. Key online exchange implementations might cache intermediate

values, such as the private vector or matrix, but ThreeBears is fast enough

that this isn’t necessary.

2.6 Encapsulation

The encapsulation function is shown in Algorithm 6. It includes a determin-

istic version which is used for CCA-secure decapsulation. As with Keypair,

Encapsulate simply passes a random seed and IV to EncapsDet.

In the CCA-secure implementation of encapsulation, the noise is derived

from a seed, and the seed is used as plaintext, as required by the Fujisaki-

Okamoto transform. But in the ephemeral implementation, the noise and

plaintext are both derived from the seed using the hash function H2. The

reason is to avoid depending on circular security: in a quantum context it is

difficult to prove that deriving the noise from the plaintext is secure, even

in the random oracle model.

2.7 Decapsulation

The decapsulation algorithm, Decapsulate, takes as input a private key sk

and a capsule, and returns a shared secret as shown in Algorithm 7.

24



Algorithm 5: Keypair generation

Function GetPubKey(sk) is
input : Uniformly random private key sk of length privateKeyBytes

output: Public key pk

// Generate the private vector

for i = 0 to d− 1 do ai ← noise1(sk, i);

// Generate a random matrix, multiply and add noise

matrixSeed← H1(sk, matrixSeedLen);

for i, j = 0 to d− 1 do Mi,j ← uniform(matrixSeed, i, j);

for i = 0 to d− 1 do

Ai ← noise1(sk, d+ i) +
∑d−1

j=0 Mi,j · aj · clar
end

// Output

pk← (matrixSeed, JAiKd−1i=0 );

return pk;

end

Function Keypair() is

sk← RandomBytes(privateKeyBytes);

return (sk, GetPubKey(sk));

end

25



Algorithm 6: Encapsulation

Function EncapsDet(pk, seed, iv) is
input : Public key pk

input : Uniformly random seed of length encSeedBytes

input : Uniformly random iv of length ivBytes

output: Shared secret; capsule

// Parse the public key

(matrixSeed, JAiKd−1i=0 )← pk;

// Generate ephemeral private key and make I-MLWE instance

for i = 0 to d− 1 do bi ← noise2(matrixSeed||seed||iv, i);
for i, j = 0 to d− 1 do Mi,j ← uniform(matrixSeed, i, j);

for i = 0 to d− 1 do

Bi ← noise2(matrixSeed||seed||iv, d+ i) +
∑d−1

j=0 Mj,i · bj · clar;

end

// Form plaintext; encrypt using approximate shared secret

C ← noise2(matrixSeed||seed||iv, 2 · d) +
∑d−1

j=0 Aj · bj · clar;

if CCA then pt← seed;

else pt← H2(matrixSeed||seed||iv, encSeedBytes);

encpt← FecEncode(pt as a sequence of bits);

for i = 0 to length(encpt)− 1 do

encri ← extract`(C, i) + 8 · encoded seedi mod 16;

end

// Output

shared secret← H2(matrixSeed||pt||iv, sharedSecretBytes);

capsule←
(
JBjKd−1j=0 , nibbles JencriK

length(pt)−1
i=0 , iv

)
;

return (shared secret, capsule);

end

Function Encapsulate(pk) is

(seed, iv)←(RandomBytes(encSeedBytes), RandomBytes(ivBytes));

return EncapsDet(pk, seed, iv);

end

26



2.8 Implicit rejection

As of the July 2019 update, the CCA-secure parameters of ThreeBears

uses implicit rejection of invalid ciphertexts. This means that if decap-

sulation fails, instead of returning an error code, we return a pseudoran-

dom function of the ciphertext. The algorithm used is U 6⊥m, as described in

[HHK17].

27



Algorithm 7: Decapsulation

Function Decapsulate(sk, capsule) is
input : Private key sk, capsule

output: Shared secret

// Unpack private key and capsule

for i = 0 to d− 1 do ai ← noise1(sk, i);(
JBjKd−1j=0 , nibbles JencriK, iv

)
← capsule;

// Calculate approximate shared secret and decrypt seed

C ←
∑d−1

j=0 Bj · aj · clar;

for i = 0 to length(encr) do

encoded seedi ←
⌊
2·encri−extract`+1(C,i)

2`

⌉
end

seed← FecDecode(encoded seed);

if CCA then

// Re-encapsulate to check that capsule was honest

(shared secret, capsule′)← EncapsDet(GetPubKey(sk), seed, iv);

if capsule′ = capsule then return shared secret;

else

prfk← H1(sk||J0xFFK, privateKeyBytes);

shared secret←
H3(prfk||capsule, sharedSecretBytes);

return shared secret
end

else

// Don’t check: just calculate the shared secret

matrixSeed← H1(sk, matrixSeedLen);

shared secret← H2(matrixSeed||seed||iv, sharedSecretBytes);

return shared secret
end

end

28



3 Design Rationale

We based our overall design on the Kyber MLWE system [BDK+17]. We

liked that MLWE allows systems of different security levels to use the same

ring code. From that starting point we made many changes, as described in

this section.

3.1 Integer MLWE problem

We originally studied the integer version of the MLWE problem simply be-

cause it hadn’t received much attention before. We expected it to be strictly

worse than polynomial MLWE, and thus not worthy of a NIST submission.

But in fact, I-MLWE gives a range of desirable parameter sets which are

comparable to polynomial MLWE in efficiency, ease of implementation, and

estimated security.

Private key as seed We chose to make the private key merely a seed,

because the key generation process is so fast that we might as well save

on storage. Applications which have plenty of memory and only need keys

ephemerally can cache the intermediates ai and Mi, but that’s an imple-

mentation decision. Furthermore, public-key regeneration can be efficiently

fused with re-encryption. This is because to re-encrypt, the recipient needs

to compute

B = b>M + e>b , C = b>(Ma+ ea) + e′b

The latter term can be rewritten as (b>M)a+ b>ea + e′b, which costs a total

of d·(d+2) multiplications. Caching the public key component A := Ma+ea

would only reduce this to d · (d+ 1) multiplications, because b>M and b>A

have to be computed anyway, but it would save on hashing.2

2It is safe to compute a uniformly random projection b>(M · r)
?
= (B − eb) · r instead,

which costs 3d multiplications instead of d(d + 1) if Mr is cached. It probably isn’t safe

to replace r with the private key s here, because s doesn’t have full entropy.

29



No plaintext confirmation hash We chose not to use an extra hash (as

was used in [TU16]). Our security proof shows why it would be reduntant

for ThreeBears. Roughly, the plaintext is already hashed to produce

noise for encryption, and the eb component propagates almost directly to

the ciphertext. This suffices in the proof, in place of an extra hash.

Implicit rejection We had two options on how to deal with decapsulation

failures. We could reject explicitly by returning a special failure symbol

“⊥”, or in C, an error code. Or we could reject implicitly by returning a

pseudorandom key and no error, which would cause later protocol steps to

fail.

Previous versions of ThreeBears used explicit rejection, which is provably

secure for ThreeBears. This is because explicit rejection is simpler and

about 10% faster. However, implicit rejection is easier to analyze in general

[SXY17, JZC+17, BHHP19, BHHP19]. It also provides a simpler API and is

easier to audit for constant-time behavior. So in v2, we converted to implicit

rejection.

When implementing implicit rejection, we had a choice between variants of

the U 6⊥ transform, which hashes the message and ciphertext, and the U 6⊥m

transform, which hashes only the message [HHK17]. The two options have

equal security, at least in the quantum random oracle model [BHHP19]. U 6⊥m

is slightly simpler and has faster encapsulation, so we chose it.

Most other proposals use U 6⊥ instead of U 6⊥m. The main reason is that U 6⊥

removes incentives for implementers to skip the (otherwise slower) PRF

calculation when the message is accepted. In that case, a side-channel attack

could reveal whether the message was accepted. In itself, this wouldn’t

be a serious problem for ThreeBears, since it is provably secure with

explicit rejection. We strongly recommend that implementors make the

decapsulation routines constant-time anyway, since this is important for

auditability.

30



CPA-secure CCA-secure

d σ2 Failure Q-core-sieve σ2 Failure Q-core-sieve

2 5/8 2−54 142 3/8 2−133 132

3 1/2 2−57 219 7/32 2−218 194

4 7/16 2−56 298 3/16 2−224 257

Table 4: Alternative parameters without error correction. D = 312, x = 210.

Hash matrix seed but not ciphertext We chose not to hash the entire

public key or entire ciphertext. Doing so would complicate and slow down

the implementation, require more memory, and prevent efficient fusing of

key generation and decryption. Furthermore, our proof indicates that it

would not affect CCA security.

However, we must hash some part of the public key into the encryption seed

to prevent batch failure attacks. Since the purpose of the matrix seed is to

prevent batch attacks in general, we chose to hash the matrix seed into the

encryption seed.

Melas code We thought the potential improvements from Saarinen’s error

correction [Saa16, Saa17] were too good not to investigate. In the context of

ThreeBears, they give a significant improvement, which must be traded

off against the increase in complexity.

We wanted to design the strongest possible error-correcting code in the

least amount of space and code complexity. The obvious choice was a BCH

code, which would add 9n bits to correct n errors. This would enable us

to correct up to 6 errors, since we have 312 − 256 = 56 bits of space, but

decoding many errors in constant time is rather complex. Decoding only two

errors avoids a tricky constant-time Berlekamp-Massey step, and seemed like

a good tradeoff between complexity and correction ability, and the Melas

BCH code seemed like the simplest variant.

Our Melas implementation has small code and memory requirements, runs in

constant time, and is so fast that its runtime is almost negligible. Its down-

31



Errors corrected 0 parity 1 2 3 4 5 6

Variance in 32nds 7 9 10 13 15 17 18 20

Q-core-sieve security 194 202 205 213 217 221 223 227

Table 5: Effectiveness of error correction to increase security. Alternative

parameters with more or less error correction. D = 312, d = 3, x = 210,

CCA2-secure, failure < 2−192.

sides are increased complexity, and a correspondingly wider attack surface

for side-channel and fault attacks.

Table 4 shows alternative parameters with no forward error correction.

While the system is still viable in this case, it is not as easy to convinc-

ingly reach Class V IND-CCA security. It is probably better to use a larger

digit x in that case, which would reduce efficiency. Table 5 compares the ef-

fectiveness of BCH error-correcting codes which would correct n errors using

9n bits 3. This allows more noise, and therefore increases security at the cost

of complexity. The table also includes the option of using a single-bit parity

code on each 64-bit section of the public key, with maximum-likelihood de-

coding if the parity check fails. Overall, most of the security improvement is

seen when moving from correcting no errors to correcting 1 or 2 errors.

3.2 Parameter choices

Seeds The seed sizes in ThreeBears are designed for an overall 2256 or

larger search space. Thus the encryption seeds and transported keys are 256

bits. We don’t believe that multi-target key recovery attacks are a problem,

since they would take 2256/T time on a classical machine to recover one of T

keys by brute force, and do not admit a significant quantum speedup. But

protecting key generation is almost free, just by setting the private to 320

bits (40 bytes). This means a classical multi-target key-recovery attack on

3The failure estimates in this table were made using our original estimation technique,

which extrapolates the probability of n-bit failures from that of 1- and 2-bit failures with

a given amount of ciphertext noise.

32



264 keys would take 2256 effort.

Since encryption seeds are 256 bits, there is a multi-target attack when some-

one encrypts many ciphertexts under a single key. We show how to mitigate

this attack by attaching an initialization vector (IV) to each ciphertext. But

our recommended parameters set the IV length to 0 bytes (unused), because

we don’t think that the multi-target brute force attack is a real risk.

We chose a 192-bit matrix seed so that matrix seeds will almost certainly

never collide even with 264 honestly-generated keys. If they do collide, it

only gives the adversary a tiny advantage anyway. See proof.pdf for more

details.

Modulus We chose N to be prime to rule out attacks based on subrings.

We would have liked for N to be a Fermat prime, but there are no Fermat

primes of the right size. The next obvious choice would be a Mersenne prime

2p−1 = 2k ·xD−1, where at best k can be ±1: it can’t be 0 because p is prime

but D · lg x is composite. Therefore reduction modulo a Mersenne prime

would at least double the noise amplitude and quadruple its variance.

So as far as we know, the best prime shape is a “golden-ratio Solinas” prime

xD − xD/2 − 1. Multiplying by clar := xD/2 − 1 and reducing modulo

this prime will amplify variance by 3/2 in the center digits. With this

amplification we needed x ≥ 210 for an acceptable failure probability, and

D ≥ 256 to transport a 256-bit key. This left the primes

22600 + 21300 − 1 and 23120 − 21560 − 1

We chose the latter for several reasons:

• The core-sieve and q-core-sieve security estimates for the larger prime

better match the NIST target security levels.

• The larger prime allows us to use FEC. The smaller prime would ac-

commodate a parity code, but no more.

• The larger prime is simpler to implement efficiently. In particular we

don’t have to worry about overflow beyond 22600.

33



CPA-secure CCA-secure

d σ2 Failure Q-core-sieve σ2 Failure Q-core-sieve

2 3/4 2−64 118 9/16 2−108 112

3 5/8 2−63 184 3/8 2−156 171

4 9/16 2−59 251 9/32 2−196 228

Table 6: Alternative parameters with D = 260, x = 210, parity check with

maximum-likelihood decoding.

The smaller prime would have enabled finer granularity in security level, but

we thought that the other considerations were more important. Potential

parameterizations with the smaller prime are shown in Table 6.

If ThreeBears’ small noise variance becomes a concern, then we can use

the same large modulus with D = 260 and x = 212 and much larger noise.

This would be useful if combinatorial attacks become a major threat. But

according to current estimates, it is much more difficult to attack D = 312

and x = 210.

Rounding precision The encryption rounding precision ` is a tradeoff.

Larger ` adds to ciphertext size, but it decreases the failure probability. This

in turn allows more noise to be added, which increases security. According

to our security estimates, the best tradeoff of security strength against ci-

phertext size is achieved with ` = 3, but with ` = 4 only slightly worse. We

chose ` = 4 because it’s simpler to implement.

Variance We chose the noise variance as a simple dyadic fraction. We

aimed to set the failure probability for CPA-secure instances below 2−50. For

the CCA-secure instances, we set the noise so that the failure rate is around

2−λ, where λ is the core-sieve estimated bit security level. For a classical

attacker, no single-key attack can cause a failure in expected time less than

1/δ > 2λ. Known attacks with bounded queries are much weaker than this,

even if a quantum computer is available [DVV18b, DVV18a].

34



For BabyBear, we set δ closer to λ in the hope that, since both the lattice

security and CCA-security estimates are underestimates, BabyBear might

actually reach Class III security. We also wanted to keep it well below 2−128

so that a failure attack is clearly entirely infeasible, even with a quantum

computer and significant improvement in attack strategy.

For the other systems, we set δ just past the target security level. This is

due to a philosophy of risk mitigation. Nobody is actually worried about an

attacker performing 2192 operations, but about a breakthrough that reduces

the work to a feasible level. CCA attacks have less room for improvement

than lattice attacks, and so are less likely to impact the practical security of

ThreeBears. We just wanted to make sure that the failure rate isn’t even

a certificational weakness.

There are some disadvantages to using so small a variance, such as hybrid

attacks [BGPW16]. But Micciancio-Peikert [MP13] suggests that even bi-

nary noise should be safe so long as the number of LWE samples available

to the adversary is small. In our case the adversary sees only d+1 ring sam-

ples of dimension D, which is at least small enough that no known attacks

apply.

3.3 Primary recommendation

With increasing focus on post-quantum cryptography, we expect lattice and

MLWE cryptanalysis to attract more attention than they did before. The art

of breaking these systems may improve considerably, and in fact the latest

attack family doesn’t yet have an efficient performance model [ADH+19]. In

addition, integer MLWE is an entirely new variant of the problem, and might

be significantly easier or harder than polynomial MLWE. So we wanted to

be conservative in our recommendations.

We have estimated the effort to break BabyBear at around 2154 for a clas-

sical computer and 2140 effort for a quantum computer, which makes it a

Class II cryptosystem in NIST’s terminology. But post-quantum cryptog-

raphy is currently a field for very conservative users. Since I-MLWE has

35



seen little analysis, we are not confident enough in BabyBear’s security to

make it our primary recommendation, but it is still suitable for lightweight

devices. It might become the primary recommendation in the future.

The stronger MamaBear seems comfortably out of reach of known attacks,

requiring 2236 effort with a classical computer or 2214 effort with a quantum

computer, which would put it in Class IV. This seems sufficiently conserva-

tive, and is our primary recommendation.

PapaBear demonstrates that ThreeBears can reach Class V, even under

its core-sieve security (under)estimate. But this is probably overkill for most

users. MamaBearEphem reaches Class V anyway, and it’s possible that

MamaBear does too once all costs are accounted for.

We recommend the CCA instances in general, and we remind designers that

within the CCA security model, the public key must be authenticated. The

CPA instances are designed primarily to be used within an authenticated

key exchange protocol, which will have to provide CCA security at the AKE

level. For the CPA instances, each keypair must be used only once.

36



4 Security analysis

4.1 The I-MLWE problem

ThreeBears’ security is based on the difficulty of the Integer Module

Learning with Errors (I-MLWE) problem, as defined in Section 1.1. Gu

proved that asymptotically, Integer RLWE and Polynomial RLWE have sim-

ilar security [Chu17], and this proof should carry over directly to I-MLWE.

As is often the case with lattice security reductions, this proof is asymptotic

and does not apply to practical parameters. But we also see no reason for

I-MLWE to be easier than P-MLWE, so we expect the two problems to be

similar in practical complexity.

4.2 The CCA transform

Included with this submission in proof.pdf is a proof which analyzes Three-

Bears’ IND-CCA security in the quantum random oracle model. It shows

that for an IND-CCA adversary A which makes q quantum queries at depth

d to cSHAKE as a quantum-accessible random oracle, there is a quantum

algorithm B using only slightly more resources than A, such that

AdvIND-CCA(A) / 4
√

2(d+ 1) · (AdvI-MLWE(B) + q/28·encryptionSeedBytes−3)

+ 4
√
qd/28·privateKeyBytes + 16qdδ + negl.

where

• AdvIND-CCA(A) is the KEM distinguishing advantage for A.

• AdvI-MLWE(B) is B’s distinguishing advantage for I-MLWE(d+1)×d.

• q is the number of times the adversary calls cSHAKE.

• δ is the failure probability.

• negl. is much less than the other terms, at least for the recommended

parameters, and is made more precise in proof.pdf.

37



Parsing the bound, the attacks on ThreeBears are limited to roughly:

• Breaking I-MLWE. Our analysis is loose by a factor of about d.

• Grover’s algorithm to discover the private key.

• Grover’s algorithm to discover the encryption seed.

• Grover’s algorithm to find ciphertexts that are likely to cause failures.

This is also loose: known attacks to find decryption failures are much

less effective.

The proof also shows security bounds for multiple victim keys and multiple

challenge ciphertexts per key. The CCA transform appears to have nearly

optimal security for attacks which use multiple targets to lower the adver-

sary’s effort (e.g. by breaking only one of many keys). We didn’t model

attacks which increase the adversary’s reward (e.g. by breaking many keys

in a batch). We also did not analyze multiple-target I-MLWE attacks in

either of these models. There is some work on batch attacks to find short

lattice vectors in a ring [PMHS19], but nothing yet which would imply a

batch attack on ThreeBears.

38



5 Analysis of known attacks

Here is a more precise analysis of the best known attack strategies.

5.1 Brute force

An attacker could attempt to guess the seeds used in ThreeBears by

brute force. This is infeasible because they are all at least 256 bits long, so

a classical attack would take 2256 effort, and a quantum attack would take

2256/maxdepth > 2128 effort. He could mount a classical multi-target key-

recovery attack, but this would take 2320/n time, where the number of target

keys n is likely much less than 264. He could also mount a classical multi-

target attack in 2256/n time on n ciphertexts encrypted with the same public

key. We could prevent this last attack by setting ivBytes to 8 instead of 0,

but we don’t consider this attack a serious threat because it isn’t remotely

feasible, probably can’t be improved, and probably won’t really run faster

on a quantum computer.

5.2 Inverting the hash

If the adversary could find preimages for cSHAKE, then he could recover

information about the private key from the matrix seed. However, this

wouldn’t actually yield the whole private key because the matrix seed is 24

bytes and the secret key is 40 bytes, so the adversary would need to find

2128 cSHAKE primages.

5.3 Lattice reduction

The main avenue of cryptanalytic attack against ThreeBears is to recover

the private key using lattice reduction. We analyzed the feasibility of these

attacks using the conservative “core-sieve” technique of NewHope [ADPS15]

39



and Kyber [BDK+17], specifically using Schanck’s estimator [Sch]. The re-

sults for primal attacks are shown in Table 7.

The “core-sieve” estimator lags behind the state of the art, which currently

appears to be G6K [ADH+19]. Unfortunately, G6K is very complicated,

and we are not aware of any scripts that efficiently model it.

Some instantiations of Ring-LWE over non-cyclotomic rings are much more

vulnerable to dual attacks, because noise which is roughly spherical in the

primal form ends up badly skewed in the dual form [Pei16]. Initial calcu-

lations by Arnab Roy and Hart Montgomery show that for golden Solinas

rings, the map between the primal and dual lattices has singular values in

the range [0.513, 2.176]
√
D. That is, it roughly halves the noise in some

coefficients and doubles it in others. Overall, we expect the dual attack to

be more difficult than the primal attack.

5.4 Hybrid attack

Because ThreeBears uses less noise than either NewHope or Kyber,

we had the additional concern of a hybrid lattice-reduction / meet-in-the-

middle attack [BGPW16]. We used Schanck’s security estimator [Sch] to

evaluate the feasibility of this attack using the same “core-sieve” estimate

as for the direct attack. We see that this attack does not appear to reduce

the security of any of the recommended parameters.

Since the hybrid attack trades off combinatorial work for lattice-reduction

work, and our lattice reduction estimates are very optimistic from the at-

tacker’s point of view, the best attack is probably a hybrid attack. But we

only expect this if the lattice part of the attack is harder than the estimate,

and therefore infeasible.

40



Classical Quantum

System Lattice Hybrid Lattice Hybrid Class

BabyBear 154 190 140 180 II

BabyBearEphem 168 210 153 197 II

MamaBear 235 241 213 228 IV

MamaBearEphem 262 333 238 314 V

PapaBear 314 317 285 300 V

PapaBearEphem 354 452 321 428 V

Table 7: Log2 difficulty estimates for primal hybrid attack.

5.5 Quantum Ideal-SVP or DCP algorithm

Combining Regev’s reduction from the shortest vector problem to the Dihe-

dral Coset Problem (DCP) [Reg02] with Kuperberg’s subexponential-time

algorithm for the DCP [Kup05] could lead to a quantum algorithm for SVP.

However, it is unlikely to perform better than classical sieves [Epe14].

In a similar vein, there is a polynomial-time algorithm which solves the

approximate shortest vector problem in an ideal [CDW17]. But since the

approximation is subexponentially bad, this appears not to improve attacks

on practical parameters [DPW19].

5.6 Chosen ciphertext

If an adversary can cause a decryption failure, he may be able to learn some-

thing about the private key. In the CCA-secure version of the system, the

Fujisaki-Okamoto transform [FO99] prevents the adversary from modifying

ciphertexts. Instead, he must choose a random seed, and hope that the ci-

phertext causes a failure. This happens with probability less than 2−156 for

all recommended CCA-secure instances of ThreeBears.

Not all ciphertexts have the same probability of causing a failure. Rather,

the failure probability pfailure depends on the amount of noise in the ci-

phertext. Since that noise is random, some ciphertexts will have higher

41



pfailure and some lower. Classically, an adversary can use this property to

decrease the number of queries required, but not the work of formulating

those queries, which is still more than 2156 per failure. This issue is studied

in [DVV18b, DVV18a]. In CCA-secure versions of ThreeBears, sampling

the noise includes the public key, so this effort cannot be re-used across

keys, which prevents attacks on earlier versions of LAC [AS18, Ham18a]

and Round5 [Ham18b].

For the same reason, not all private keys have the same probability of caus-

ing a failure. But distinguishing failure-prone public keys should be as hard

as breaking them, so the adversary probably can’t use this to his advan-

tage.

A quantum attacker could try to use Grover’s algorithm to find ciphertexts

with higher pfailure. We believe that this cannot be more than marginally

effective. One may show that Grover’s algorithm raises the expected fail-

ure probability per random-oracle query from mean(pfailure) to at most

root-mean-square(pfailure), and that no quantum random-oracle algorithm

can reduce the work by more than MAXDEPTH. So even if an adversary

could semi-accurately evaluate whether a given ciphertext would cause a

failure, a single-key Grover attack would only reduce the security class from

IV to III, or from II to I.

We are confident that failure attacks would have been infeasible for our

first round parameters. But given the problems they caused for LAC and

Round5, we reduced the failure probability in the second round so that they

will be entirely infeasible, even with significant improvements. Perhaps with

more study the noise level can be raised again.

5.7 Malleability and kleptography

The CPA-secure variants of ThreeBears have malleable ciphertexts. If

a few low-significance bits in the capsule are changed, the resulting shared

secret probably remains the same. Both the CPA- and CCA-secure vari-

ants have this property for the public key as well. We could have reduced

42



malleability at a cost in performance and complexity, by hashing the entire

public key and ciphertext into the final output. We decided against this

because malleability doesn’t usually matter, and when it does matter, the

proper defense is at the protocol level and not the KEM level.

Malleability is not a serious problem for IND-CCA-secure encryption, be-

cause the public key must be authenticated anyway to prevent man-in-the-

middle attacks. One can invent a threat model where malleability costs a

few bits of security, such as an adversary who can modify public keys but

not ciphertexts, but such a threat model probably isn’t realistic.

Malleability is a greater threat for authenticated key exchange (AKE) pro-

tocols. But ThreeBears is not an AKE, and AKEs require their own

design and analysis with protocol-level countermeasures against modifica-

tion of packets. We expect that authors using ThreeBears in an AKE

would use a dedicated FO mode, as in [HKSU18]. An AKE might be built

on a IND-CPA-secure KEM with negligible failure probability. This can be

obtained by using our IND-CCA parameter sets, but setting the cca flag to

zero.

Malleability can also be used for kleptography, in which the adversary subtly

modifies the public key or ciphertext to leak secret information [KLT17].

Our IND-CCA mode mitigates kleptographic attacks on encapsulation, but

not key generation. Additional hashing wouldn’t significantly reduce the

attack surface for kleptograhpy.

43



CPU Arch flags Keccak asm

Intel Skylake -march=native Haswell Yes

ARM Cortex-A8 -march=native -mthumb ARMv7A No

ARM Cortex-A53 -mcpu=cortex-a53 -DVECLEN=1 generic64 No

Table 8: Compilation settings. We added -mthumb on Cortex-A8 for space

savings, and -DVECLEN=1 on Cortex-A53 because its NEON unit is slow.

6 Performance Analysis

6.1 Time

ThreeBears key generation and encapsulation both require sampling a

d× d random matrix and multiplying it by a vector. For our N , Karatsuba

multiplication is appropriate [KO62], so these operations take approximately

O(d2 ·(logN)log2 3/b2) time on a CPU with a b-bit multiplier. This is compa-

rable to an RSA encryption with small encryption exponent. Encapsulation

and decapsulation require a d-long vector dot product, which is d times

faster. Additionally, key generation and encapsulation require sampling 2 ·d
and 2 · d+ 1 noise elements, respectively.

To measure concrete performance, we benchmarked our code on several

different platforms, as shown in Table 9.

For each platform except for Cortex-M4, we compiled each instance with

clang-8 -Os -fomit-frame-pointer -DNDEBUG

and the additional flags shown in Table 8.4 We used 2-level Karatsuba

multiplication, and linked the optimized libraries from the Keccak Code

Package [BDP+17]. The Skylake implementation uses a small amount of

assembly in the multiplication routine. For the other platforms, we used C

code only.

4-Os means to optimize for size. But whereas gcc -Os actually optimizes for size,

clang -Os effectively optimizes for speed while keeping the size reasonable.

44



For Cortex-M4, we integrated ThreeBears into the PQM4 project [KRSS].

Its benchmarking scripts compiled each instance with

gcc-8 -O2 -fomit-frame-pointer -DNDEBUG

We used 1-level Karatsuba multiplication, since this was faster and used

less memory than 2-level, and we linked the optimized Keccak libraries from

PQM4. Our Cortex-M4 code contains no assembly.

Speed-optimized implementations will probably trade memory for decap-

sulation time, by caching some components of the public and private key.

The amount to be cached depends on the constraints of the application.

Our implementations follow this specification’s API, so they don’t cache

anything.

We believe that the Skylake and Cortex-A53 code is reasonably close to

optimal, but maybe careful tuning of the multiplication algorithm could

knock 25% off. For Cortex-A8, optimizing the multiplication algorithm

with NEON should provide a large improvement. For Cortex-M4, we didn’t

closely investigate how to optimize.

In profiling runs, we found that the FEC added between 0.1% and 2% over-

head. In fact, the more significant overhead from adding FEC is that it

enables larger noise, which can result in more iterations in the noise func-

tion.

6.2 Space

Bandwidth and key storage Each field element is serialized into 312 ·
10/8 = 390 bytes. Each instance uses 390 · d+ 24 bytes in its public key, 40

bytes in its private key, and 390 · d+ (256 + 18)/2 bytes in its capsules. The

concrete measurements are shown in Table 10.

Code size We measured the total code size on each platform to implement

MamaBear, using the same compilation flags that we used to measure

45



CPA-secure CCA-secure

System KeyGen Enc Dec KeyGen Enc Dec

Skylake (high speed)

BabyBear 41k 62k 28k 41k 60k 113k

MamaBear 84k 103k 34k 79k 97k 169k

PapaBear 124k 153k 40k 117k 144k 230k

Cortex-A53

BabyBear 155k 214k 82k 156k 211k 373k

MamaBear 307k 383k 112k 301k 373k 597k

PapaBear 508k 602k 143k 500k 590k 879k

Cortex-A8

BabyBear 345k 503k 177k 351k 498k 846k

MamaBear 733k 946k 257k 724k 938k 1436k

PapaBear 1244k 1516k 326k 1236k 1501k 2159k

Cortex-M4 (high speed)

BabyBear 590k 771k 251k 590k 756k 1308k

MamaBear 1160k 1394k 350k 1150k 1394k 2146k

PapaBear 1919k 2208k 449k 1906k 2178k 3177k

Cortex-M4 (low memory)

BabyBear 681k 952k 251k 681k 937k 1487k

MamaBear 1433k 1803k 350k 1416k 1766k 2544k

PapaBear 2464k 2933k 449k 2436k 2884k 3884k

Table 9: Runtime of (KeyGen, Encaps, Decaps) in cycles.

The platforms tested were:

• Intel NUC6i5SYH with Core i3-6100U “Skylake” 64-bit CPU (2.3GHz)

• Raspberry Pi 3 with ARM Cortex-A53 64-bit CPU (1.2GHz)

• BeagleBone Black with ARM Cortex-A8 32-bit CPU (1.0GHz)

• STM32F407G-DISC1 with ARM Cortex-M4 32-bit CPU (168 MHz)

46



System Private key Public key Capsule

BabyBear 40 804 917

MamaBear 40 1194 1307

PapaBear 40 1584 1697

Table 10: ThreeBears object sizes in bytes

Cortex-M4

Component Skylake Cortex-A53 Cortex-A8 Speed Mem

Arithmetic 2194 1892 1424 852 852

Melas FEC 659 541 431 417 417

cSHAKE 1490 900 866 660 660

Main system 3397 2995 2173 2303 2074

Total 7740 6328 4894 4232 4087

Table 11: Code size for MamaBear in bytes.

performance. The code size does not include Keccak, since we linked an

external Keccak library5, nor does it include system libraries like libc. It

includes an API wrapper for pqm4, but not on other platforms. The sizes

are shown in Table 11. Ephemeral instances are slightly smaller.

Memory usage We measured the stack memory usage of each top-level

function on Skylake using Valgrind’s lackey tool. We also measured the

Cortex-M4 implementations using pqm4’s benchmarking tool. These mea-

surements included the memory used by ThreeBears internally, including

hash contexts, function calls and wrappers, but not the input or output.

The results are shown in Table 12, and should be regarded as approxi-

mate6.

5This is actually a little silly, because a fully-unrolled Keccak implementation produces

much more object code than ThreeBears.
6 Here are some examples of things that were not accounted for: variation in the stack’s

alignment, variation in shared libraries, and memory used by Keccak Code Package’s

initialization routines. If these use extra memory, it is probably negligible in practice.

47



CPA-secure CCA-secure

System Keygen Enc Dec Keygen Enc Dec

Skylake (high speed)

BabyBear 6216 6648 4232 6216 6648 8200

MamaBear 9128 9544 4648 9128 9560 11528

PapaBear 12872 13288 5064 12872 13304 15688

Skylake (low memory)

All instances 2392 2424 2168 2392 2424 3080

Cortex-M4 (high speed)

BabyBear 2752 2824 2080 2752 2824 4944

MamaBear 3248 3304 2080 3280 3312 5904

PapaBear 3760 3792 2080 3760 3824 6896

Cortex-M4 (low memory)

All instances 2280 2344 2112 2312 2344 3024

Table 12: ThreeBears memory usage bytes, excluding input and output.

In some cases, “all instances” actually vary by a few bytes, in which case

the maximum is reported.

48



7 Advantages and limitations

We originally designed ThreeBears because we thought that variants of

RLWE (in this case, I-MLWE) should be studied more before the community

chooses a standard. Our analysis shows that it is quite competitive with its

predecessors Kyber [BDK+17] and Hila5 [Saa17].

7.1 Advantages

Simplicity ThreeBears has a relatively simple specification and ad-

mits a relatively simple implementation. On most platforms, ThreeBears

doesn’t need vectorization to achieve respectable speed, except perhaps in

a separate Keccak library. These advantages mean that its code is small,

simple and easy to audit. Forward error correction adds some complexity,

but it’s only some 75 lines of C code and it’s easy to test separately.

Size To hedge our new security assumption, we have chosen larger in-

stances than other RLWE systems. Despite this, public keys and ciphertexts

are reasonable sizes, about 1.2kB and 1.3kB respectively for MamaBear.

This is small enough to be practical for most Internet-connected systems.

Private keys are just random seeds, and are only 40 bytes. Code sizes are

under 10kB plus Keccak, and stack requirements can be pushed near 3kB

plus the input and output.

Speed As in most RLWE and MLWE systems, key generation, encapsu-

lation and decapsulation are also very fast. They are typically significantly

faster even than elliptic curve Diffie-Hellman.

Hardware support ThreeBears can be used with existing big-integer

software and hardware, which is useful for smart cards and hardware security

modules. This reduces hardware area in systems that must support both

pre-quantum and post-quantum algorithms.

49



7.2 Limitations

Novelty ThreeBears doubles down on RLWE’s main disadvantage: the

Integer MLWE problem has not been studied as extensively as either plain

LWE or polynomial RLWE. Gu showed that integer and polynomial RLWE

are asymptotically comparable [Chu17], but we aren’t aware of any results

for practical parameter sizes.

Design auditing The analysis of failure probabilities for ThreeBears is

very complex. Furthermore, its proof of security uses properties specific to

LWE, rather than following generic, modular proofs of security. This raises

the risk of an auditing mistake.

Noise ThreeBears’ efficiency comes in part from a large dimension and

low noise. This might put it at risk from new hybrid attacks, even though

existing ones are not a threat.

Flexibility ThreeBears can only be used for key encapsulation and

encryption. So far there is no I-MLWE signature scheme. Furthermore,

ThreeBears’ parameters are less tunable than a cyclotomic RLWE scheme.

Side channels Because ThreeBears has long carry chains, it may be

more complex to protect the system against side channels than a polynomial

LWE scheme.

7.3 Suitability for constrained environments

ThreeBears is suitable for smart card implementation, and implementors

can reuse their RSA big-number engines. We don’t expect ThreeBears to

be as competitive on 8-bit microcontrollers.

50



8 Absence of backdoors

I, the designer of ThreeBears, faithfully declare that I have not deliber-

ately inserted any hidden weaknesses in the algorithms.

9 Acknowledgments

Thanks to Arnab Roy and Hart Montgomery for their analysis of the ring

shape.

Thanks to Dominique Unruh, Eike Kiltz, Fernando Virdia, Amit Deo and

Andris Ambainis for discussions of the quantum analysis of the CCA trans-

form.

Thanks to Mark Marson for many helpful discussions, including feedback

on drafts of this work.

Thanks to Rambus for supporting this work.

51



References

[ADH+19] Martin R. Albrecht, Lo Ducas, Gottfried Herold, Elena Kir-

shanova, Eamonn W. Postlethwaite, and Marc Stevens. The

general sieve kernel and new records in lattice reduction. Cryp-

tology ePrint Archive, Report 2019/089, 2019. https://

eprint.iacr.org/2019/089.

[ADPS15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter

Schwabe. Post-quantum key exchange - a new hope. Cryptol-

ogy ePrint Archive, Report 2015/1092, 2015. http://eprint.

iacr.org/2015/1092.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter

Schwabe. NewHope without reconciliation. Cryptology ePrint

Archive, Report 2016/1157, 2016. http://eprint.iacr.org/

2016/1157.

[AS18] Jacob Alperin-Sheriff. Official comment: LAC. NIST PQC

forum email list, 2018. https://csrc.nist.gov/CSRC/.../

round-1/official-comments/LAC-official-comment.pdf.

[BDK+17] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien

Stehlé. CRYSTALS – kyber: a CCA-secure module-lattice-

based KEM. Cryptology ePrint Archive, Report 2017/634, 2017.

http://eprint.iacr.org/2017/634.

[BDP+17] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Ass-

che, Ronny Van Keer, and Vladimir Sedach. Keccak code pack-

age, 2017. https://github.com/gvanas/KeccakCodePackage.

[BGPW16] Johannes A. Buchmann, Florian Göpfert, Rachel Player, and

Thomas Wunderer. On the hardness of LWE with binary er-

ror: Revisiting the hybrid lattice-reduction and meet-in-the-

middle attack. In David Pointcheval, Abderrahmane Nitaj,

52

https://eprint.iacr.org/2019/089
https://eprint.iacr.org/2019/089
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2016/1157
https://csrc.nist.gov/CSRC/.../round-1/official-comments/LAC-official-comment.pdf
https://csrc.nist.gov/CSRC/.../round-1/official-comments/LAC-official-comment.pdf
http://eprint.iacr.org/2017/634
https://github.com/gvanas/KeccakCodePackage


and Tajjeeddine Rachidi, editors, AFRICACRYPT 16, volume

9646 of LNCS, pages 24–43. Springer, Heidelberg, April 2016.

doi:10.1007/978-3-319-31517-1_2.

[BHHP19] Nina Bindel, Mike Hamburg, Andreas Hlsing, and Edoardo Per-

sichetti. Tighter proofs of cca security in the quantum random

oracle model. Cryptology ePrint Archive, Report 2019/590,

2019. https://eprint.iacr.org/2019/590.

[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short

stickelberger class relations and application to ideal-SVP. In

Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-

ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 324–

348. Springer, Heidelberg, April / May 2017. doi:10.1007/

978-3-319-56620-7_12.

[Chu17] Gu Chunsheng. Integer version of ring-LWE and its appli-

cations. Cryptology ePrint Archive, Report 2017/641, 2017.

http://eprint.iacr.org/2017/641.

[DPW19] Lo Ducas, Maxime Planon, and Benjamin Wesolowski. On the

shortness of vectors to be found by the ideal-svp quantum al-

gorithm. Cryptology ePrint Archive, Report 2019/234, 2019.

https://eprint.iacr.org/2019/234.

[DVV18a] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Ver-

bauwhede. The impact of error dependencies on Ring/Mod-

LWE/LWR based schemes. Cryptology ePrint Archive, Report

2018/1172, 2018. https://eprint.iacr.org/2018/1172.

[DVV18b] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Ver-

bauwhede. On the impact of decryption failures on the security

of LWE/LWR based schemes. Cryptology ePrint Archive, Re-

port 2018/1089, 2018. https://eprint.iacr.org/2018/1089.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably

secure key exchange scheme based on the learning with errors

53

http://dx.doi.org/10.1007/978-3-319-31517-1_2
https://eprint.iacr.org/2019/590
http://dx.doi.org/10.1007/978-3-319-56620-7_12
http://dx.doi.org/10.1007/978-3-319-56620-7_12
http://eprint.iacr.org/2017/641
https://eprint.iacr.org/2019/234
https://eprint.iacr.org/2018/1172
https://eprint.iacr.org/2018/1089


problem. Cryptology ePrint Archive, Report 2012/688, 2012.

http://eprint.iacr.org/2012/688.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature

scheme based on discrete logarithms. In G. R. Blakley and David

Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–

18. Springer, Heidelberg, August 1984.

[Epe14] Daniel Epelbaum. On quantum sieve approaches to the lattice

shortest vector problem, 2014. https://www.scottaaronson.

com/showcase3/epelbaum-daniel.pdf.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of

asymmetric and symmetric encryption schemes. In Michael J.

Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages

537–554. Springer, Heidelberg, August 1999. doi:10.1007/

3-540-48405-1_34.

[Ham15] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. Cryptol-

ogy ePrint Archive, Report 2015/625, 2015. http://eprint.

iacr.org/2015/625.

[Ham18a] Mike Hamburg. Official comment: LAC. NIST PQC forum

email list, 2018. https://csrc.nist.gov/CSRC/.../round-1/

official-comments/LAC-official-comment.pdf.

[Ham18b] Mike Hamburg. Official comment: Round5 =

round2 + hila5. NIST PQC forum email list, 2018.

https://csrc.nist.gov/CSRC/...1/official-comments/

Round5-official-comment.pdf.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A mod-

ular analysis of the Fujisaki-Okamoto transformation. In Yael

Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume

10677 of LNCS, pages 341–371. Springer, Heidelberg, Novem-

ber 2017. doi:10.1007/978-3-319-70500-2_12.

54

http://eprint.iacr.org/2012/688
https://www.scottaaronson.com/showcase3/epelbaum-daniel.pdf
https://www.scottaaronson.com/showcase3/epelbaum-daniel.pdf
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/3-540-48405-1_34
http://eprint.iacr.org/2015/625
http://eprint.iacr.org/2015/625
https://csrc.nist.gov/CSRC/.../round-1/official-comments/LAC-official-comment.pdf
https://csrc.nist.gov/CSRC/.../round-1/official-comments/LAC-official-comment.pdf
https://csrc.nist.gov/CSRC/...1/official-comments/Round5-official-comment.pdf
https://csrc.nist.gov/CSRC/...1/official-comments/Round5-official-comment.pdf
http://dx.doi.org/10.1007/978-3-319-70500-2_12


[HKSU18] Kathrin Hvelmanns, Eike Kiltz, Sven Schge, and Dominique Un-

ruh. Generic authenticated key exchange in the quantum ran-

dom oracle model. Cryptology ePrint Archive, Report 2018/928,

2018. https://eprint.iacr.org/2018/928.

[HNP+03] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval,

John Proos, Joseph H. Silverman, Ari Singer, and William

Whyte. The impact of decryption failures on the security of

NTRU encryption. In Dan Boneh, editor, CRYPTO 2003, vol-

ume 2729 of LNCS, pages 226–246. Springer, Heidelberg, August

2003. doi:10.1007/978-3-540-45146-4_14.

[JZC+17] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and

Zhi Ma. Post-quantum IND-CCA-secure KEM without addi-

tional hash. Cryptology ePrint Archive, Report 2017/1096,

2017. https://eprint.iacr.org/2017/1096.

[KjCP16] John Kelsey, Shu jen Chang, and Ray Perlner. SHA-3 de-

rived functions: cSHAKE, KMAC, TupleHash and Parallel-

Hash, 2016. https://doi.org/10.6028/NIST.SP.800-185.

[KLT17] Robin Kwant, Tanja Lange, and Kimberley Thissen. Lattice

klepto: Turning post-quantum crypto against itself. Cryptol-

ogy ePrint Archive, Report 2017/1140, 2017. https://eprint.

iacr.org/2017/1140.

[KO62] A Karabutsa and Yu Ofman. Multiplication of many-digital

numbers by automatic computers. Doklady Akademii Nauk

SSSR, 145(2):293, 1962.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and

Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM

Cortex-M4. https://github.com/mupq/pqm4.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm

for the dihedral hidden subgroup problem. SIAM Journal on

Computing, 35(1):170–188, 2005.

55

https://eprint.iacr.org/2018/928
http://dx.doi.org/10.1007/978-3-540-45146-4_14
https://eprint.iacr.org/2017/1096
https://doi.org/10.6028/NIST.SP.800-185
https://eprint.iacr.org/2017/1140
https://eprint.iacr.org/2017/1140
https://github.com/mupq/pqm4


[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On

ideal lattices and learning with errors over rings. In Henri

Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,

pages 1–23. Springer, Heidelberg, May / June 2010. doi:

10.1007/978-3-642-13190-5_1.

[LW87] Gilles Lachaud and Jacques Wolfmann. Sommes de klooster-

man, courbes elliptiques et codes cycliques en caractéristique 2.

CR Acad. Sci. Paris Sér. I Math, 305(20):881–883, 1987.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and

LWE with small parameters. In Ran Canetti and Juan A.

Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,

pages 21–39. Springer, Heidelberg, August 2013. doi:10.1007/

978-3-642-40041-4_2.

[Pei16] Chris Peikert. How (not) to instantiate ring-LWE. Cryptology

ePrint Archive, Report 2016/351, 2016. http://eprint.iacr.

org/2016/351.

[PMHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehl.

Approx-svp in ideal lattices with pre-processing. Cryptology

ePrint Archive, Report 2019/215, 2019. https://eprint.

iacr.org/2019/215.

[Reg02] Oded Regev. Quantum computation and lattice problems. In

43rd FOCS, pages 520–529. IEEE Computer Society Press,

November 2002. doi:10.1109/SFCS.2002.1181976.

[Saa16] Markku-Juhani O. Saarinen. Ring-LWE ciphertext compression

and error correction: Tools for lightweight post-quantum cryp-

tography. Cryptology ePrint Archive, Report 2016/1058, 2016.

http://eprint.iacr.org/2016/1058.

[Saa17] Markku-Juhani O. Saarinen. On reliability, reconciliation, and

error correction in ring-LWE encryption. Cryptology ePrint

56

http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-40041-4_2
http://dx.doi.org/10.1007/978-3-642-40041-4_2
http://eprint.iacr.org/2016/351
http://eprint.iacr.org/2016/351
https://eprint.iacr.org/2019/215
https://eprint.iacr.org/2019/215
http://dx.doi.org/10.1109/SFCS.2002.1181976
http://eprint.iacr.org/2016/1058


Archive, Report 2017/424, 2017. http://eprint.iacr.org/

2017/424.

[Sch] John Schanck. Scripts for estimating the security of lattice based

cryptosystems. https://github.com/jschanck/estimator,

retrieved Feb 26, 2019.

[SXY17] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa.

Tightly-secure key-encapsulation mechanism in the quantum

random oracle model. Cryptology ePrint Archive, Report

2017/1005, 2017. http://eprint.iacr.org/2017/1005.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum

security of the Fujisaki-Okamoto and OAEP transforms. In Mar-

tin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,

volume 9986 of LNCS, pages 192–216. Springer, Heidelberg, Oc-

tober / November 2016. doi:10.1007/978-3-662-53644-5_8.

57

http://eprint.iacr.org/2017/424
http://eprint.iacr.org/2017/424
https://github.com/jschanck/estimator
http://eprint.iacr.org/2017/1005
http://dx.doi.org/10.1007/978-3-662-53644-5_8


A Intellectual property statements

This appendix is a LATEX rendering of the intellectual property statements

we mailed to NIST.

A.1 Statement by Each Submitter

I, Michael Hamburg, of 425 Market St 11th Floor, San Francisco CA 94105,

do hereby declare that the cryptosystem, reference implementation, or opti-

mized implementations that I have submitted, known as ThreeBears, is my

own original work, or if submitted jointly with others, is the original work

of the joint submitters.

I further declare that:

• I do not hold and do not intend to hold any patent or patent application

with a claim which may cover the cryptosystem, reference implemen-

tation, or optimized implementations that I have submitted, known as

ThreeBears).

I do hereby acknowledge and agree that my submitted cryptosystem will be

provided to the public for review and will be evaluated by NIST, and that

it might not be selected for standardization by NIST. I further acknowledge

that I will not receive financial or other compensation from the U.S. Gov-

ernment for my submission. I certify that, to the best of my knowledge,

I have fully disclosed all patents and patent applications which may cover

my cryptosystem, reference implementation or optimized implementations.

I also acknowledge and agree that the U.S. Government may, during the

public review and the evaluation process, and, if my submitted cryptosystem

is selected for standardization, during the lifetime of the standard, modify

my submitted cryptosystem’s specifications (e.g., to protect against a newly

discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and

proceed to publish the draft standards for public comment

58



I do hereby agree to provide the statements required by Sections 2.D.2 and

2.D.3 in the Call For Proposals for any patent or patent application identi-

fied to cover the practice of my cryptosystem, reference implementation or

optimized implementations and the right to use such implementations for

the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process,

NIST may remove my cryptosystem from consideration for standardization.

If my cryptosystem (or the derived cryptosystem) is removed from considera-

tion for standardization or withdrawn from consideration by all submitter(s)

and owner(s), I understand that rights granted and assurances made under

Sections 2.D.1, 2.D.2 and 2.D.3 of the Call For Proposals, including use

rights of the reference and optimized implementations, may be withdrawn by

the submitter(s) and owner(s), as appropriate.

Signed: [in the mailed version]

Title: Senior Principal Engineer

Date: Sept 22, 2017

Place: San Francisco, CA

59



A.2 Statement by Reference/Optimized Implementations’ Owner

I, Martin Scott, 425 Market St 11th Floor, San Francisco CA 94105, am the

owner or authorized representative of the owner (Rambus Inc.) of the sub-

mitted reference implementation and optimized implementations and hereby

grant the U.S. Government and any interested party the right to reproduce,

prepare derivative works based upon, distribute copies of, and display such

implementations for the purposes of the post-quantum algorithm public re-

view and evaluation process, and implementation if the corresponding cryp-

tosystem is selected for standardization and as a standard, notwithstanding

that the implementations may be copyrighted or copyrightable.

Signed: [in the mailed version]

Title: Senior Vice President / General Manager

Date: Sept 22, 2017

Place: San Francisco, CA

60


	Changelog
	Second-round tweaks
	Typo corrections

	Introduction
	Module Learning With Errors
	Polynomial and Integer MLWE
	Practical details

	Specification
	Notation
	Encoding
	Parameters
	Common subroutines
	Hash functions
	Sampling
	Extracting bits from a number
	Forward error correction

	Keypair generation
	Encapsulation
	Decapsulation
	Implicit rejection

	Design Rationale
	Integer MLWE problem
	Parameter choices
	Primary recommendation

	Security analysis
	The I-MLWE problem
	The CCA transform

	Analysis of known attacks
	Brute force
	Inverting the hash
	Lattice reduction
	Hybrid attack
	Quantum Ideal-SVP or DCP algorithm
	Chosen ciphertext
	Malleability and kleptography

	Performance Analysis
	Time
	Space

	Advantages and limitations
	Advantages
	Limitations
	Suitability for constrained environments

	Absence of backdoors
	Acknowledgments
	Intellectual property statements
	Statement by Each Submitter
	Statement by Reference/Optimized Implementations' Owner


